Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

ML.NET Model Builder - 회귀(Regression), 다중 분류(Multi-class classification) 예제

지난번에 설명한,

Visual Studio - ML.NET Model Builder 소개
; https://www.sysnet.pe.kr/2/0/11894

예제는 간단한 2진 분류였는데요, 지난 튜토리얼의 마지막 단계까지 가면,

ML.NET Tutorial - Get started in 10 minutes
; https://dotnet.microsoft.com/learn/machinelearning-ai/ml-dotnet-get-started-tutorial/next

이제 또 다른 시나리오를 실습해 보라면서 "Price prediction dataset" 예제 파일을 링크하고 있습니다.

Price prediction dataset
; https://raw.githubusercontent.com/dotnet/machinelearning-samples/master/samples/csharp/getting-started/Regression_TaxiFarePrediction/TaxiFarePrediction/Data/taxi-fare-train.csv

혹시 당황하셨다면 ^^ 완벽한 예제 코드로 정리된 다음의 문서를 보면 됩니다.

dotnet/machinelearning-samples
; https://github.com/dotnet/machinelearning-samples/tree/master/samples/csharp/getting-started/Regression_TaxiFarePrediction




그러니까 결국 문제는 Model Builder를 사용할 때 어떤 종류의 기계학습에 대한 시나리오가 맞는지 선택하는 것입니다.

  1. 회귀
  2. 분류 - {2진 분류, 다중 분류}

일단, 2진 분류는 결과가 Yes/No로 나온다는 점에서 기준이 매우 간단합니다. 그리고 회귀와 다중 분류의 경우는 결과가 학습 데이터의 "Label"로 제한된 것이라면 다중 분류, 그렇지 않고 연속 공간에서 나오는 것이라면 회귀라고 간단하게 정리할 수 있습니다.

따라서, 이번 주제인 "택시 요금 예측(Taxi Fare Prediction)"은 결괏값이 연속 공간이므로 회귀에 해당합니다. 그럼 Model Builder를 간단하게 사용할 수 있겠죠. ^^

1. Scenario
    Price Prediction

2. Data
    Input: File
    Select a file: taxi-fare-train.csv
    Column to Predict (Label): fare_amount

3. Train
    Time to train (seconds): 10

MLModel.zip 파일이 생성되었으면 이전 글과 동일하게 다음의 작업을 추가하고,

1) Install-Package Microsoft.ML
   Install-Package Microsoft.ML.FastTree
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

예측 코드를 작성하면 됩니다.

using System;
using Microsoft.ML;
using ConsoleApp1ML.Model.DataModels;

class Program
{
    static void Main(string[] args)
    {
        MLContext mlContext = new MLContext();

        ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
        var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

        // Create sample data to do a single prediction with it 
        ModelInput sampleData = new ModelInput
        {
            Vendor_id = "VTS",
            Rate_code = 1.0f,
            Passenger_count = 1,
            Trip_time_in_secs = 1140,
            Trip_distance = 3.75f,
            Payment_type = "CRD",
        };

        // Try a single prediction
        ModelOutput result = predEngine.Predict(sampleData);

        Console.WriteLine($"Single Prediction --> Predicted value: {result.Score}");
    }
}

/* 출력 결과
Single Prediction --> Predicted value: 15.95807
*/




이렇게 해서 "2진 분류"와 "회귀"에 대한 예제를 살펴봤는데요. "다중 분류"도 마저 살펴보겠습니다. 다중 분류의 가장 유명한 사례가 바로 붓꽃 판정입니다.

Iris Data Set 
; https://archive.ics.uci.edu/ml/datasets/iris

즉, 결괏값이 택시 요금 예측과 같이 연속 공간이 아니라, 데이터 파일 자체에 포함된 Label(붓꽃 데이터의 경우 class) 집합으로 한정되기 때문에 "다중 분류" 시나리오가 됩니다.

그럼 Python 예제만 있는 붓꽃 분류를 ^^ C# ML.NET으로 해보겠습니다.

우선, 위의 사이트에서 다운로드한 iris.data는 CSV 형식의 파일이지만 아쉽게도 칼럼 정보가 없습니다. 대신 iris.names 파일을 보면 다음과 같이 속성 정보가 있으니,

1. sepal length in cm 
2. sepal width in cm 
3. petal length in cm 
4. petal width in cm 
5. class: 
 -- Iris Setosa 
 -- Iris Versicolour 
 -- Iris Virginica

이를 참고해 iris.data의 첫 행에 다음과 같이 칼럼 정보를 넣고 파일명을 .csv를 붙여 저장합니다.

sepal_length,sepal_width,petal_length,petal_width,class
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
...[생략]...

끝입니다 이제 Model Builder를 실행해 다음과 같은 설정으로 자동 코드를 생성하고,

1. Scenario
    Custom Scenario

2. Data
    Input: File
    Select a file: iris.data.csv
    Column to Predict (Label): class

3. Train
    Machine learning task: multiclass-classification
    Time to train (seconds): 10

자동 코드가 생성되었으면 역시 우리의 응용 프로그램 프로젝트에 다음과 같은 설정을 한 후,

1) Install-Package Microsoft.ML
2) MLModel.zip 추가 -  "Copy to Output Directory" - "Copy if newer"
3) ModelInput.cs, ModelOutput.cs 추가

간단하게 붓꽃 판정 코드를 만들 수 있습니다. ^^

using ConsoleApp1ML.Model.DataModels;
using Microsoft.ML;
using System;

namespace ConsoleApp2
{
    class Program
    {
        static void Main(string[] args)
        {
            MLContext mlContext = new MLContext();

            ITransformer mlModel = mlContext.Model.Load("MLModel.zip", out DataViewSchema inputSchema);
            var predEngine = mlContext.Model.CreatePredictionEngine<ModelInput, ModelOutput>(mlModel);

            ModelInput sampleData = new ModelInput
            {
                Sepal_length = 5,
                Sepal_width = 2.9f,
                Petal_length = 1,
                Petal_width = 0.2f,
            };

            ModelOutput predictionResult = predEngine.Predict(sampleData);

            Console.WriteLine($"Single Prediction --> Predicted value: {predictionResult.Prediction} | Predicted scores: [{String.Join(",", predictionResult.Score)}]");
        }
    }
}

/* 출력 결과
Single Prediction --> Predicted value: Iris-setosa | Predicted scores: [0.8280767,0.1602236,0.01169968]
*/

엄청 쉽죠? ^^

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/12/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 136  137  138  139  140  141  142  143  [144]  145  146  147  148  149  150  ...
NoWriterDateCnt.TitleFile(s)
1454정성태5/31/201326318Java: 15. Java 7 Control Panel 실행시키는 방법
1453정성태5/22/201325351기타: 32. Microsoft FTP 사이트에 접속하는 방법
1452정성태5/21/201333065Windows: 73. TabProcGrowth 값 삭제 후 IE를 실행시키면 다시 복원되는 경우 [3]
1451정성태5/17/201331979Windows: 72. 윈도우 서버 2012 기초 사용법
1450정성태5/16/201322738오류 유형: 176. SQL10007N Message "0" could not be retrieved. Reason code: "3"
1449정성태5/15/201329842오류 유형: 175. SpeechRecognitionEngine 사용 시 오류 유형 2가지
1448정성태5/14/201324838VC++: 68. #pragma warning(disable: ...)로 오류 제어가 안된다면?
1447정성태5/3/201326520개발 환경 구성: 191. Debugging Tools for Windows 독립 설치 버전 [1]
1446정성태4/30/201327330.NET Framework: 368. Encoding 타입의 대체(fallback) 메카니즘 [1]
1445정성태4/26/201325554디버깅 기술: 54. NT 서비스의 Main 메서드 안에서 Process.GetProcessesByName 호출 시 멈춤 현상 [1]
1444정성태4/26/201329565기타: 31. Internet Explorer: 자바스크립트로 숨겨진 파일 다운로드 경로를 알아내는 방법 [1]
1443정성태4/24/201325249개발 환경 구성: 190. Azure PaaS 웹 응용 프로그램 배포 후 SMTP 서버 구성 [2]
1442정성태4/21/201328804기타: 30. 마이크로소프트 워드의 CPU 점유 현상으로 글자 입력이 느려졌다면? [1]
1441정성태4/21/201335415.NET Framework: 367. LargeAddressAware 옵션이 적용된 닷넷 32비트 프로세스의 가용 메모리 [14]
1440정성태4/19/201324156오류 유형: 174. dumpbin.exe 실행시 mspdb110.dll 로드 오류
1439정성태4/18/201328004VS.NET IDE: 76. Visual Studio 2012와 Itanium 빌드 옵션 [2]
1438정성태4/17/201327431.NET Framework: 366. 다른 프로세스에 환경 변수 설정하는 방법 - 두 번째 이야기 [1]파일 다운로드1
1437정성태4/17/201327662VC++: 67. CRT(C Runtime DLL: msvcr...dll)에 대한 의존성 제거
1436정성태4/17/201333034.NET Framework: 365. Local SYSTEM 권한으로 코드를 실행하는 방법파일 다운로드1
1435정성태4/15/201341903Windows: 71. ad-hoc 보다 더 편리한 "가상 Wifi" 를 이용한 인터넷 공유 [2]
1434정성태4/9/201323193오류 유형: 173. TFS 서버의 이벤트 로그 오류 - WebHost failed to process a request. Parameter name: certificate
1433정성태4/9/201323519개발 환경 구성: 189. TFS에 설치된 SharePoint 의 PowerShell 콘솔 띄우는 방법
1432정성태4/5/201324520오류 유형: 172. System.Web.PipelineModuleStepContainer.GetEventCount 에서 NullReferenceException 이 발생한다면?
1431정성태4/5/201325138기타: 29. 부팅 가능한 (외장) HDD를 기존 부팅 메뉴에 추가하는 방법
1430정성태4/4/201327022제니퍼 .NET: 23. 모바일용 웹 사이트에서 발생하는 응답 시간 지연 현상 [5]파일 다운로드1
1429정성태3/29/201323375개발 환경 구성: 188. SCOM 2012 - ASP.NET 모니터링 방법
... 136  137  138  139  140  141  142  143  [144]  145  146  147  148  149  150  ...