Microsoft MVP성태의 닷넷 이야기
글쓴 사람
홈페이지
첨부 파일

C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법

일단 행렬식을 이용하면,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

범용적으로 다항식에 대한 근사를 최소 자승법(최소 제곱법)으로 구할 수 있습니다. 하지만, 만약 대상을 "1차 함수"로 직선에 대한 근사만을 구한다면 복잡한 행렬 연산 없이 for 문만으로 매개 변수를 구하는 것이 가능합니다.

가령, 지난번 예제의 행렬식을 보겠습니다.

θ0 + θ1x1 = y1
θ0 + θ1x2 = y2
...
θ0 + θ1xn = yn



AX=B
A-1AX=A-1B
X=A-1B (A-1 == 의사역행렬)

결국 중요한 것은, 위의 식에서 A-1B 연산 결과를 구하는 것인데요, 헷갈리니까 일단 의사역행렬을 A+라고 정의하고, 이것을 행렬 라이브러리를 이용하면 단순히 Matrix 타입의 PseudoInverse를 호출하는 것으로 쉽게 해결했지만 만약 직접 구하고 싶다면 다음과 같은 과정을 거쳐야 합니다.

A+ = (ATA)-1AT

따라서, 매개변수를 나타내는 행렬 X는 B 행렬까지 곱해주면서 다음과 같이 계산할 수 있습니다.

X = A+ * B
  = (ATA)-1AT * B

이제 남은 작업은 위의 식을 간략하게 바꿔주면 됩니다. ^^




이 상태에서 A 행렬을 보면 "n x 2" 행렬이고 이것의 전치 행렬(AT)은 "2 x n" 행렬이 됩니다. 또한 B 행렬도 "n x 1" 행렬임을 감안하면 연산 결과가 다음과 같이 정리될 수 있습니다.

X = (ATA)-1AT * B
  = ((2 x n) * (n x 2))-1 * (2 x n) * (n x 1)
  = (2 x 2)-1 * (2 x 1)
  = (2 x 2) * (2 x 1)
  = (2 x 1)

즉, X 행렬은 (당연히 1차 함수의 매개변수 2개를 구하는 것이므로) 언제나 "2 x 1" 행렬이 나오므로 X 행렬의 인덱스에 해당하는 값을 정리해 볼 수도 있습니다. 이 과정을 단계별로 천천히 ^^ 접근해 볼까요?





2 x 2 행렬의 역행렬은 다음과 같이 간략화할 수 있으므로,



ATA 결과의 역행렬을 구할 수 있습니다.



위의 결과를 2 x n 행렬의 AT와 연산을 하면 과정이 좀 복잡하니 어차피 행렬곱은 결합법칙이 성립하므로 뒤의 AT B 연산을 먼저 다음과 같이 정리할 수 있습니다.



마지막으로 (ATA)-1(2 x 2 행렬)에 AT * B(2 x 1 행렬)을 곱하는 것이므로 다음과 같이 최종 정리가 됩니다.



따라서 1차 방정식의 매개변수는 이렇게 단일 식으로 각각 구할 수 있습니다.






구하는 과정에 정리할 식이 좀 끼어들어서 그렇지, 사실 C# 코드로 위의 계산을 나타내면 별거 아닙니다. ^^

// 단순 for 루프를 이용한 계산
private static (double theta1, double theta0) GetEquation2(double[] xData, double[] yData)
{
    double sumAnBn = 0.0;
    double sumAn = 0.0;
    double sumBn = 0.0;
    double sumAnAn = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        sumAnBn += xData[i] * yData[i];
        sumAn += xData[i];
        sumBn += yData[i];
        sumAnAn += xData[i] * xData[i];
    }

    int n = xData.Length;
    double Q = sumAnAn * n - sumAn * sumAn;

    double theta1 = (n * sumAnBn - sumAn * sumBn) / Q;
    double theta0 = (-sumAn * sumAnBn + sumAnAn * sumBn) / Q;

    return (theta1, theta0);
}

// 행렬을 이용한 계산
private static (double theta1, double theta0) GetEquation(double[] xData, double[] yData)
{
    Matrix matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector add1 = Vector.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    Matrix matAwith1 = matA.InsertColumn(1, add1);

    Console.WriteLine(matAwith1);
    Matrix matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix pinvMatA = matAwith1.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix matX = pinvMatA * matB;

    return (matX[0, 0], matX[1, 0]);
}

당연하겠지만 행렬식을 이용했던 GetEquation 메서드와 비교해 보면,

{
    // y = theta0 + (theta1 * x)
    (double theta1, double theta0) = GetEquation(xData, yData);
    Console.WriteLine($"[method1] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method1] y = 231.545758451005 + 1.39551018043075 * x
    */
}

{
    (double theta1, double theta0) = GetEquation2(xData, yData);
    Console.WriteLine($"[method2] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method2] y = 231.545758451006 + 1.39551018043075 * x
    */
}

부동소수점 계산임을 감안해 값이 거의 동일하다는 것을 알 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]





[최초 등록일: ]
[최종 수정일: 5/28/2019 ]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer@outlook.com

비밀번호

댓글 쓴 사람
 



2019-05-28 10시35분
선형 최소 제곱법(Linear Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5579
정성태

[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
12222정성태6/3/20206VS.NET IDE: 146. error information: "CryptQueryObject" (-2147024893/0x80070003)
12221정성태6/3/202017Windows: 168. 비어 있지 않은 디렉터리로 symbolic link(junction) 연결하는 방법
12220정성태6/3/202020.NET Framework: 907. C# DLL로부터 TLB 및 C/C++ 헤더 파일(TLH)을 생성하는 방법
12219정성태6/1/202098.NET Framework: 906. C# - lock (this), lock (typeof(...))를 사용하면 안 되는 이유파일 다운로드1
12218정성태5/31/202071.NET Framework: 905. C# - DirectX 게임 클라이언트 실행 중 키보드 입력을 감지하는 방법
12217정성태5/24/202030오류 유형: 615. Transaction count after EXECUTE indicates a mismatching number of BEGIN and COMMIT statements. Previous count = 0, current count = 1.
12216정성태5/15/2020107.NET Framework: 904. USB/IP PROJECT를 이용해 C#으로 USB Keyboard 가상 장치 만들기
12215정성태5/12/2020134개발 환경 구성: 490. C# - (Wireshark의) USBPcap을 이용한 USB 패킷 모니터링파일 다운로드1
12214정성태5/5/2020110개발 환경 구성: 489. 정식 인증서가 있는 경우 Device Driver 서명하는 방법 (2) - UEFI/SecureBoot
12213정성태5/3/2020205개발 환경 구성: 488. (코드로 가상 USB 장치를 만들 수 있는) USB/IP PROJECT 소개
12212정성태5/1/202098개발 환경 구성: 487. UEFI / Secure Boot 상태인지 확인하는 방법
12211정성태4/27/2020208개발 환경 구성: 486. WSL에서 Makefile로 공개된 리눅스 환경의 C/C++ 소스 코드 빌드
12210정성태4/20/2020311.NET Framework: 903. .NET Framework의 Strong-named 어셈블리 바인딩 (1) - app.config을 이용한 바인딩 리디렉션 [1]파일 다운로드1
12209정성태4/13/2020169오류 유형: 614. 리눅스 환경에서 C/C++ 프로그램이 Segmentation fault 에러가 발생한 경우 (2)
12208정성태4/12/2020202Linux: 29. 리눅스 환경에서 C/C++ 프로그램이 Segmentation fault 에러가 발생한 경우
12207정성태4/2/2020196스크립트: 19. Windows PowerShell의 NonInteractive 모드
12206정성태4/2/2020274오류 유형: 613. 파일 잠금이 바로 안 풀린다면? - The process cannot access the file '...' because it is being used by another process.
12205정성태4/2/2020175스크립트: 18. Powershell에서는 cmd.exe의 명령어를 지원하진 않습니다.
12204정성태4/1/2020167스크립트: 17. Powershell 명령어에 ';' (semi-colon) 문자가 포함된 경우
12203정성태3/18/2020360오류 유형: 612. warning: 'C:\ProgramData/Git/config' has a dubious owner: '...'.
12202정성태3/18/2020385개발 환경 구성: 486. .NET Framework 프로젝트를 위한 GitLab CI/CD Runner 구성
12201정성태3/18/2020194오류 유형: 611. git-credential-manager.exe: Using credentials for username "Personal Access Token".
12200정성태3/18/2020484VS.NET IDE: 145. NuGet + Github 라이브러리 디버깅 관련 옵션 3가지 - "Enable Just My Code" / "Enable Source Link support" / "Suppress JIT optimization on module load (Managed only)"
12199정성태3/17/2020189오류 유형: 610. C# - CodeDomProvider 사용 시 Unhandled Exception: System.IO.DirectoryNotFoundException: Could not find a part of the path '...\f2_6uod0.tmp'.
12198정성태3/17/2020199오류 유형: 609. SQL 서버 접속 시 "Cannot open user default database. Login failed."
[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...