Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법

일단 행렬식을 이용하면,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

범용적으로 다항식에 대한 근사를 최소 자승법(최소 제곱법)으로 구할 수 있습니다. 하지만, 만약 대상을 "1차 함수"로 직선에 대한 근사만을 구한다면 복잡한 행렬 연산 없이 for 문만으로 매개 변수를 구하는 것이 가능합니다.

가령, 지난번 예제의 행렬식을 보겠습니다.

θ0 + θ1x1 = y1
θ0 + θ1x2 = y2
...
θ0 + θ1xn = yn



AX=B
A-1AX=A-1B
X=A-1B (A-1 == 의사역행렬)

결국 중요한 것은, 위의 식에서 A-1B 연산 결과를 구하는 것인데요, 헷갈리니까 일단 의사역행렬을 A+라고 정의하고, 이것을 행렬 라이브러리를 이용하면 단순히 Matrix 타입의 PseudoInverse를 호출하는 것으로 쉽게 해결했지만 만약 직접 구하고 싶다면 다음과 같은 과정을 거쳐야 합니다.

A+ = (ATA)-1AT

따라서, 매개변수를 나타내는 행렬 X는 B 행렬까지 곱해주면서 다음과 같이 계산할 수 있습니다.

X = A+ * B
  = (ATA)-1AT * B

이제 남은 작업은 위의 식을 간략하게 바꿔주면 됩니다. ^^




이 상태에서 A 행렬을 보면 "n x 2" 행렬이고 이것의 전치 행렬(AT)은 "2 x n" 행렬이 됩니다. 또한 B 행렬도 "n x 1" 행렬임을 감안하면 연산 결과가 다음과 같이 정리될 수 있습니다.

X = (ATA)-1AT * B
  = ((2 x n) * (n x 2))-1 * (2 x n) * (n x 1)
  = (2 x 2)-1 * (2 x 1)
  = (2 x 2) * (2 x 1)
  = (2 x 1)

즉, X 행렬은 (당연히 1차 함수의 매개변수 2개를 구하는 것이므로) 언제나 "2 x 1" 행렬이 나오므로 X 행렬의 인덱스에 해당하는 값을 정리해 볼 수도 있습니다. 이 과정을 단계별로 천천히 ^^ 접근해 볼까요?





2 x 2 행렬의 역행렬은 다음과 같이 간략화할 수 있으므로,



ATA 결과의 역행렬을 구할 수 있습니다.



위의 결과를 2 x n 행렬의 AT와 연산을 하면 과정이 좀 복잡하니 어차피 행렬곱은 결합법칙이 성립하므로 뒤의 AT B 연산을 먼저 다음과 같이 정리할 수 있습니다.



마지막으로 (ATA)-1(2 x 2 행렬)에 AT * B(2 x 1 행렬)을 곱하는 것이므로 다음과 같이 최종 정리가 됩니다.



따라서 1차 방정식의 매개변수는 이렇게 단일 식으로 각각 구할 수 있습니다.






구하는 과정에 정리할 식이 좀 끼어들어서 그렇지, 사실 C# 코드로 위의 계산을 나타내면 별거 아닙니다. ^^

// 단순 for 루프를 이용한 계산
private static (double theta1, double theta0) GetEquation2(double[] xData, double[] yData)
{
    double sumAnBn = 0.0;
    double sumAn = 0.0;
    double sumBn = 0.0;
    double sumAnAn = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        sumAnBn += xData[i] * yData[i];
        sumAn += xData[i];
        sumBn += yData[i];
        sumAnAn += xData[i] * xData[i];
    }

    int n = xData.Length;
    double Q = sumAnAn * n - sumAn * sumAn;

    double theta1 = (n * sumAnBn - sumAn * sumBn) / Q;
    double theta0 = (-sumAn * sumAnBn + sumAnAn * sumBn) / Q;

    return (theta1, theta0);
}

// 행렬을 이용한 계산
private static (double theta1, double theta0) GetEquation(double[] xData, double[] yData)
{
    Matrix matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector add1 = Vector.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    Matrix matAwith1 = matA.InsertColumn(1, add1);

    Console.WriteLine(matAwith1);
    Matrix matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix pinvMatA = matAwith1.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix matX = pinvMatA * matB;

    return (matX[0, 0], matX[1, 0]);
}

당연하겠지만 행렬식을 이용했던 GetEquation 메서드와 비교해 보면,

{
    // y = theta0 + (theta1 * x)
    (double theta1, double theta0) = GetEquation(xData, yData);
    Console.WriteLine($"[method1] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method1] y = 231.545758451005 + 1.39551018043075 * x
    */
}

{
    (double theta1, double theta0) = GetEquation2(xData, yData);
    Console.WriteLine($"[method2] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method2] y = 231.545758451006 + 1.39551018043075 * x
    */
}

부동소수점 계산임을 감안해 값이 거의 동일하다는 것을 알 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 5/28/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2019-05-28 10시35분
선형 최소 제곱법(Linear Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5579
정성태

[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13945정성태6/7/2025428오류 유형: 960. 파이썬 + conda - mysqlclient 사용 시 "NameError: name '_mysql' is not defined" 에러
13944정성태6/7/2025467오류 유형: 959. The trust relationship between this workstation and the primary domain failed. - 네 번째 이야기
13943정성태6/6/2025664개발 환경 구성: 748. Windows + Foundry Local - 로컬에서 AI 모델 활용
13942정성태6/5/2025864오류 유형: 958. winget 설치 시 "0x80d02002 : unknown error"
13941정성태6/2/20251024닷넷: 2334. C# - cpuid 명령어를 이용한 CPU 제조사 문자열 가져오기파일 다운로드1
13940정성태6/1/20251410C/C++: 188. C++의 32비트 + Release 어셈블리 코드를 .NET으로 포팅할 때 주의할 점파일 다운로드1
13939정성태5/29/20251698오류 유형: 957. NVIDIA Triton Inference Server - version `GLIBCXX_3.4.32' not found (required by /opt/tritonserver/backends/python/triton_python_backend_stub)
13938정성태5/29/20251435개발 환경 구성: 747. 파이썬 - WSL/docker에 구성한 Triton 예제 개발 환경
13937정성태5/24/20251357개발 환경 구성: 746. Windows + WSL2 환경에서 (tensorflow 등의) NVIDIA GPU 인식
13936정성태5/23/20251188개발 환경 구성: 745. Linux / WSL 환경에 Miniconda 설치하기
13935정성태5/20/20251232파이썬 - pip 사용 시 "ImportError: cannot import name 'html5lib' from 'pip._vendor'" 오류
13934정성태5/20/20251709스크립트: 77. 파이썬 - 'urllib.request' 모듈의 명시적/암시적 로딩 차이
13933정성태5/19/20251288오류 유형: 956. Visual Studio 2022가 17.12 버전부터 업데이트 되지 않는다면?
13932정성태5/18/20251499스크립트: 76. 파이썬 - Version 문자열 다루기(semver 패키지)
13931정성태5/17/20251791스크립트: 75. 파이썬 - Cython 기본 예제 및 컴파일
13930정성태5/17/20251489개발 환경 구성: 744. 파이썬 - Windows embeddable package 환경에서 외부 패키지 사용하는 방법(ex: UFO² 환경 구성)
13929정성태5/16/20251509오류 유형: 955. 파이썬 - "Windows embeddable package" REPL 환경에서 "NameError: name 'exit' is not defined"
13928정성태5/15/20251554오류 유형: 954. UFO² - "'Invalid URL (POST /v1/chat/completions/chat/completions)'"
13927정성태5/15/20251545오류 유형: 953. OpenAI - The API request of HOST_AGENT failed: OpenAI API request exceeded rate limit: Error code: 429
13926정성태5/14/20251907개발 환경 구성: 743. LLM과 윈도우의 만남 - Desktop AgentOS UFO² 기본 환경 구성
13925정성태5/12/20252007닷넷: 2333. C# - (Console 유형의 프로젝트에서) Clipboard 연동파일 다운로드1
13924정성태5/8/20251758닷넷: 2332. C# - (JetBrains Omea Reader 대상으로) 런타임 시에 메서드 가로채기 [2]파일 다운로드1
13923정성태5/5/20251504스크립트: 74. 파이썬 - C# - Python.NET의 RunSimpleScript, Exec, Eval 차이점파일 다운로드1
13922정성태5/3/20251752스크립트: 73. 파이썬 - Windows embeddable package 버전에서 tkinter 환경 구성
13921정성태5/3/20252265오류 유형: 952. 듀얼 채널 메모리 정렬을 지키지 않은 컴퓨터의 Windows 비정상 종료 현상(Blue Screen) [2]
[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...