Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사],
조회: 18666
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://learn.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/9/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 91  92  93  94  95  96  97  98  99  100  101  102  103  104  [105]  ...
NoWriterDateCnt.TitleFile(s)
11300정성태9/10/201721202.NET Framework: 681. dotnet.exe - run, exec, build, restore, publish 차이점 [3]
11299정성태9/9/201719895개발 환경 구성: 330. Hyper-V VM의 Internal Network를 Private 유형으로 만드는 방법
11298정성태9/8/201723168VC++: 119. EnumProcesses / EnumProcessModules API 사용 시 주의점 [1]
11297정성태9/8/201719857디버깅 기술: 96. windbg - 풀 덤프에 포함된 모든 닷넷 모듈을 파일로 저장하는 방법
11296정성태9/8/201722943웹: 36. Edge - "이 웹 사이트는 이전 기술에서 실행되며 Internet Explorer에서만 작동합니다." 끄는 방법
11295정성태9/7/201720452디버깅 기술: 95. Windbg - .foreach 사용법
11294정성태9/4/201720100개발 환경 구성: 329. 마이크로소프트의 CoreCLR 프로파일러 예제 빌드 방법 [1]
11293정성태9/4/201720733개발 환경 구성: 328. Visual Studio(devenv.exe)를 배치 파일(.bat)을 통해 실행하는 방법
11292정성태9/4/201718905오류 유형: 419. Cannot connect to WMI provider - Invalid class [0x80041010]
11291정성태9/3/201720712개발 환경 구성: 327. 아파치 서버 2.4를 위한 mod_aspdotnet 마이그레이션
11290정성태9/3/201723978개발 환경 구성: 326. 아파치 서버에서 ASP.NET을 실행하는 mod_aspdotnet 모듈 [2]
11289정성태9/3/201721644개발 환경 구성: 325. GAC에 어셈블리 등록을 위해 gacutil.exe을 사용하는 경우 주의 사항
11288정성태9/3/201718458개발 환경 구성: 324. 윈도우용 XAMPP의 아파치 서버 구성 방법
11287정성태9/1/201727600.NET Framework: 680. C# - 작업자(Worker) 스레드와 UI 스레드 [11]
11286정성태8/28/201715044기타: 67. App Privacy Policy
11285정성태8/28/201723521.NET Framework: 679. C# - 개인 키 보안의 SFTP를 이용한 파일 업로드파일 다운로드1
11284정성태8/27/201721546.NET Framework: 678. 데스크톱 윈도우 응용 프로그램에서 UWP 라이브러리를 이용한 비디오 장치 열람하는 방법 [1]파일 다운로드1
11283정성태8/27/201717315오류 유형: 418. CSS3117: @font-face failed cross-origin request. Resource access is restricted.
11282정성태8/26/201719763Math: 22. 행렬로 바라보는 피보나치 수열
11281정성태8/26/201721608.NET Framework: 677. Visual Studio 2017 - NuGet 패키지를 직접 참조하는 PackageReference 지원 [2]
11280정성태8/24/201718599디버깅 기술: 94. windbg - 풀 덤프에 포함된 모든 모듈을 파일로 저장하는 방법
11279정성태8/23/201730190.NET Framework: 676. C# Thread가 Running 상태인지 아는 방법
11278정성태8/23/201718454오류 유형: 417. TFS - Warning - Unable to refresh ... because you have a pending edit. [1]
11277정성태8/23/201719691오류 유형: 416. msbuild - error MSB4062: The "TransformXml" task could not be loaded from the assembly
11276정성태8/23/201723921.NET Framework: 675. C# - (파일) 확장자와 연결된 실행 파일 경로 찾기 [2]파일 다운로드1
11275정성태8/23/201732958개발 환경 구성: 323. Visual Studio 설치 없이 빌드 환경 구성 - Visual Studio 2017용 Build Tools [1]
... 91  92  93  94  95  96  97  98  99  100  101  102  103  104  [105]  ...