Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사],
조회: 18641
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://learn.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 3/9/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 91  92  93  94  95  96  97  [98]  99  100  101  102  103  104  105  ...
NoWriterDateCnt.TitleFile(s)
11485정성태4/11/201823716.NET Framework: 738. C# - Console 프로그램이 Ctrl+C 종료 시점을 감지하는 방법파일 다운로드1
11484정성태4/11/201824777.NET Framework: 737. C# - async를 Task 타입이 아닌 사용자 정의 타입에 적용하는 방법파일 다운로드1
11483정성태4/10/201828112개발 환경 구성: 358. "Let's Encrypt"에서 제공하는 무료 SSL 인증서를 IIS에 적용하는 방법 (2) [1]
11482정성태4/10/201820508VC++: 126. CUDA Core 수를 알아내는 방법
11481정성태4/10/201832249개발 환경 구성: 357. CUDA의 인덱싱 관련 용어 - blockIdx, threadIdx, blockDim, gridDim
11480정성태4/9/201822217.NET Framework: 736. C# - API를 사용해 Azure에 접근하는 방법 [2]파일 다운로드1
11479정성태4/9/201817881.NET Framework: 735. Azure - PowerShell로 Access control(IAM)에 새로운 계정 만드는 방법
11478정성태11/8/201920170디버깅 기술: 115. windbg - 덤프 파일로부터 PID와 환경변수 등의 정보를 구하는 방법 [1]
11477정성태4/8/201817587오류 유형: 460. windbg - sos 명령어 수행 시 c0000006 오류 발생
11476정성태4/8/201819114디버깅 기술: 114. windbg - !threads 출력 결과로부터 닷넷 관리 스레드(System.Threading.Thread) 객체를 구하는 방법
11475정성태3/28/201821456디버깅 기술: 113. windbg - Thread.Suspend 호출 시 응용 프로그램 hang 현상에 대한 덤프 분석
11474정성태3/27/201819571오류 유형: 459. xperf: error: TEST.Event: Invalid flags. (0x3ec).
11473정성태3/22/201824697.NET Framework: 734. C# - Thread.Suspend 호출 시 응용 프로그램 hang 현상파일 다운로드2
11472정성태3/22/201818653개발 환경 구성: 356. GTX 1070, GTX 960, GT 640M의 cudaGetDeviceProperties 출력 결과
11471정성태3/20/201822045VC++: 125. CUDA로 작성한 RGB2RGBA 성능 [1]파일 다운로드1
11470정성태3/20/201824224오류 유형: 458. Visual Studio - CUDA 프로젝트 빌드 시 오류 C1189, expression must have a constant value
11469정성태3/19/201817256오류 유형: 457. error MSB3103: Invalid Resx file. Could not load file or assembly 'System.Windows.Forms, ...' or one of its dependencies.
11468정성태3/19/201816724오류 유형: 456. 닷넷 응용 프로그램 실행 시 0x80131401 예외 발생
11467정성태3/19/201816141오류 유형: 455. Visual Studio Installer - 업데이트 실패
11466정성태3/18/201817249개발 환경 구성: 355. 한 대의 PC에서 2개 이상의 DirectX 게임을 실행하는 방법
11463정성태3/15/201819652.NET Framework: 733. 스레드 간의 read/write 시에도 lock이 필요 없는 경우파일 다운로드1
11462정성태3/14/201822572개발 환경 구성: 354. HTTPS 호출에 대한 TLS 설정 확인하는 방법 [1]
11461정성태3/13/201825106오류 유형: 454. 윈도우 업데이트 설치 오류 - 0x800705b4 [1]
11460정성태3/13/201817603디버깅 기술: 112. windbg - 닷넷 메모리 덤프에서 전역 객체의 내용을 조사하는 방법
11459정성태3/13/201818438오류 유형: 453. Debug Diagnostic Tool에서 mscordacwks.dll을 찾지 못하는 문제
11458정성태2/21/201819463오류 유형: 452. This share requires the obsolete SMB1 protocol, which is unsafe and could expose your system to attack. [1]
... 91  92  93  94  95  96  97  [98]  99  100  101  102  103  104  105  ...