Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법

일단 행렬식을 이용하면,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

범용적으로 다항식에 대한 근사를 최소 자승법(최소 제곱법)으로 구할 수 있습니다. 하지만, 만약 대상을 "1차 함수"로 직선에 대한 근사만을 구한다면 복잡한 행렬 연산 없이 for 문만으로 매개 변수를 구하는 것이 가능합니다.

가령, 지난번 예제의 행렬식을 보겠습니다.

θ0 + θ1x1 = y1
θ0 + θ1x2 = y2
...
θ0 + θ1xn = yn



AX=B
A-1AX=A-1B
X=A-1B (A-1 == 의사역행렬)

결국 중요한 것은, 위의 식에서 A-1B 연산 결과를 구하는 것인데요, 헷갈리니까 일단 의사역행렬을 A+라고 정의하고, 이것을 행렬 라이브러리를 이용하면 단순히 Matrix 타입의 PseudoInverse를 호출하는 것으로 쉽게 해결했지만 만약 직접 구하고 싶다면 다음과 같은 과정을 거쳐야 합니다.

A+ = (ATA)-1AT

따라서, 매개변수를 나타내는 행렬 X는 B 행렬까지 곱해주면서 다음과 같이 계산할 수 있습니다.

X = A+ * B
  = (ATA)-1AT * B

이제 남은 작업은 위의 식을 간략하게 바꿔주면 됩니다. ^^




이 상태에서 A 행렬을 보면 "n x 2" 행렬이고 이것의 전치 행렬(AT)은 "2 x n" 행렬이 됩니다. 또한 B 행렬도 "n x 1" 행렬임을 감안하면 연산 결과가 다음과 같이 정리될 수 있습니다.

X = (ATA)-1AT * B
  = ((2 x n) * (n x 2))-1 * (2 x n) * (n x 1)
  = (2 x 2)-1 * (2 x 1)
  = (2 x 2) * (2 x 1)
  = (2 x 1)

즉, X 행렬은 (당연히 1차 함수의 매개변수 2개를 구하는 것이므로) 언제나 "2 x 1" 행렬이 나오므로 X 행렬의 인덱스에 해당하는 값을 정리해 볼 수도 있습니다. 이 과정을 단계별로 천천히 ^^ 접근해 볼까요?





2 x 2 행렬의 역행렬은 다음과 같이 간략화할 수 있으므로,



ATA 결과의 역행렬을 구할 수 있습니다.



위의 결과를 2 x n 행렬의 AT와 연산을 하면 과정이 좀 복잡하니 어차피 행렬곱은 결합법칙이 성립하므로 뒤의 AT B 연산을 먼저 다음과 같이 정리할 수 있습니다.



마지막으로 (ATA)-1(2 x 2 행렬)에 AT * B(2 x 1 행렬)을 곱하는 것이므로 다음과 같이 최종 정리가 됩니다.



따라서 1차 방정식의 매개변수는 이렇게 단일 식으로 각각 구할 수 있습니다.






구하는 과정에 정리할 식이 좀 끼어들어서 그렇지, 사실 C# 코드로 위의 계산을 나타내면 별거 아닙니다. ^^

// 단순 for 루프를 이용한 계산
private static (double theta1, double theta0) GetEquation2(double[] xData, double[] yData)
{
    double sumAnBn = 0.0;
    double sumAn = 0.0;
    double sumBn = 0.0;
    double sumAnAn = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        sumAnBn += xData[i] * yData[i];
        sumAn += xData[i];
        sumBn += yData[i];
        sumAnAn += xData[i] * xData[i];
    }

    int n = xData.Length;
    double Q = sumAnAn * n - sumAn * sumAn;

    double theta1 = (n * sumAnBn - sumAn * sumBn) / Q;
    double theta0 = (-sumAn * sumAnBn + sumAnAn * sumBn) / Q;

    return (theta1, theta0);
}

// 행렬을 이용한 계산
private static (double theta1, double theta0) GetEquation(double[] xData, double[] yData)
{
    Matrix matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector add1 = Vector.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    Matrix matAwith1 = matA.InsertColumn(1, add1);

    Console.WriteLine(matAwith1);
    Matrix matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix pinvMatA = matAwith1.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix matX = pinvMatA * matB;

    return (matX[0, 0], matX[1, 0]);
}

당연하겠지만 행렬식을 이용했던 GetEquation 메서드와 비교해 보면,

{
    // y = theta0 + (theta1 * x)
    (double theta1, double theta0) = GetEquation(xData, yData);
    Console.WriteLine($"[method1] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method1] y = 231.545758451005 + 1.39551018043075 * x
    */
}

{
    (double theta1, double theta0) = GetEquation2(xData, yData);
    Console.WriteLine($"[method2] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method2] y = 231.545758451006 + 1.39551018043075 * x
    */
}

부동소수점 계산임을 감안해 값이 거의 동일하다는 것을 알 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]





[최초 등록일: ]
[최종 수정일: 5/28/2019 ]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer@outlook.com

비밀번호

댓글 쓴 사람
 



2019-05-28 10시35분
선형 최소 제곱법(Linear Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5579
정성태

1  2  3  4  5  6  7  8  9  10  11  12  13  14  [15]  ...
NoWriterDateCnt.TitleFile(s)
11980정성태7/7/20195652개발 환경 구성: 450. Visual Studio Code의 Java 확장을 이용한 간단한 프로젝트 구축파일 다운로드1
11979정성태7/8/20191564개발 환경 구성: 449. TFS에서 gitlab/github등의 git 서버로 마이그레이션하는 방법
11978정성태7/6/20191353Windows: 161. 계정 정보가 동일하지 않은 PC 간의 인증을 수행하는 방법 [1]
11977정성태7/6/20192416오류 유형: 554. git push - error: RPC failed; HTTP 413 curl 22 The requested URL returned error: 413 Request Entity Too Large
11976정성태7/4/20191436오류 유형: 553. (잘못 인증 한 후) 원격 git repo 재인증 시 "remote: HTTP Basic: Access denied" 오류 발생
11975정성태7/4/20193715개발 환경 구성: 448. Visual Studio Code에서 콘솔 응용 프로그램 개발 시 "입력"받는 방법
11974정성태7/4/20192191Linux: 22. "Visual Studio Code + Remote Development"로 윈도우 환경에서 리눅스(CentOS 7) C/C++ 개발
11973정성태7/4/20191492Linux: 21. 리눅스에서 공유 라이브러리가 로드되지 않는다면?
11972정성태7/3/20191792.NET Framework: 847. JAVA와 .NET 간의 AES 암호화 연동파일 다운로드1
11971정성태7/3/20191637개발 환경 구성: 447. Visual Studio Code에서 OpenCvSharp 개발 환경 구성
11970정성태7/2/20191361오류 유형: 552. 웹 브라우저에서 파일 다운로드 후 "Running security scan"이 끝나지 않는 문제
11969정성태7/7/20191310Math: 63. C# - 3층 구조의 신경망파일 다운로드1
11968정성태7/1/20193478오류 유형: 551. Visual Studio Code에서 Remote-SSH 연결 시 "Opening Remote..." 단계에서 진행되지 않는 문제 [1]
11967정성태7/1/20191366개발 환경 구성: 446. Synology NAS를 Windows 10에서 iSCSI로 연결하는 방법
11966정성태6/30/20191351Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화파일 다운로드1
11965정성태6/30/20191424.NET Framework: 846. C# - 2차원 배열을 1차원 배열로 나열하는 확장 메서드파일 다운로드1
11964정성태6/30/20191807Linux: 20. C# - Linux에서의 Named Pipe를 이용한 통신
11963정성태6/29/20191702Linux: 19. C# - .NET Core Unix Domain Socket 사용 예제
11962정성태6/27/20191118Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류파일 다운로드1
11961정성태6/27/2019908Graphics: 37. C# - PLplot - 출력 모음(Family File Output)
11960정성태6/27/20191281Graphics: 36. C# - PLplot의 16색 이상을 표현하는 방법과 subpage를 이용한 그리드 맵 표현
11959정성태6/27/20191040Graphics: 35. matplotlib와 PLplot의 한글 처리
11958정성태6/25/20192538Linux: 18. C# - .NET Core Console로 리눅스 daemon 프로그램 만드는 방법 [1]
11957정성태6/24/20192957Windows: 160. WMI 쿼리를 명령행에서 간단하게 수행하는 wmic.exe [1]
11956정성태6/24/20192117Linux: 17. CentOS 7에서 .NET Core Web App 실행 환경 구성 [1]
11955정성태6/20/20191501Math: 60. C# - 로지스틱 회귀를 이용한 분류파일 다운로드1
1  2  3  4  5  6  7  8  9  10  11  12  13  14  [15]  ...