Microsoft MVP성태의 닷넷 이야기
글쓴 사람
홈페이지
첨부 파일

C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최대 값 구하기

예전에 미분을 이용한,

그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

방정식의 근사해를 알아본 적이 있는데요. 도함수의 다음과 같은 특성을 이용하면,

f' < 0: 최솟값은 우측에.
f' = 0: 최솟값
f' > 0: 최솟값은 좌측에.

최솟값을 (그 반대로는 최댓값을) 근사할 수 있습니다. 예를 들어, f(x) = x^2 - 2x + 1이라는 방정식이 있다면,

gradient_descent_1.png

이것의 도함수는 f'(x) = 2x - 2가 되고, (무작위로 선정한) x = 10으로 시작하는 경우 최솟값을 다음과 같이 이동하면서 근사할 수 있습니다.

f'(10) = 18 > 0: 최솟값은 좌측에 있으므로 다음번 x는 좀 더 작게 시도.
f'( 9) = 16 > 0:  "
f'( 8) = 14 > 0:  "
...            :  "
f'( 1) =  0 = 0:  최솟값

물론 위의 경우에는 1씩 줄여나가다 운이 좋아 정확히 최솟값 위치에 왔지만 단순하지 않은 상황에서는 근삿값에 대한 범위를 마련하고 그것을 만족하는 수준이거나, 아니면 근삿값으로 진행하는 과정 중에 원하는 수준만큼의 변화가 없다면 중단하는 식으로 작성하면 됩니다.

코드로 만들어 보면,

using MathNet.Numerics.Random;
using PLplot;
using System;
using System.Linq;

namespace ConsoleApp2
{
    class Program
    {
        static void Main(string[] args)
        {
            Func<double, double> f = (x) => (x - 1) * (x - 1);
            Func<double, double> df = (x) => 2 * x - 2;

            // 그래프 출력
            DrawPlotChart(-14, 14, -10, 120, f, df);
        }

        private static void DrawPlotChart(double xMin, double xMax, double yMin, double yMax, 
            Func<double, double> orgDrawFunc, Func<double, double> dfDrawFunc)
        {
            string chartFileName = "click.svg";

            using (var pl = new PLStream())
            {
                pl.sdev("svg");
                pl.sfnam(chartFileName);
                pl.spal0("cmap0_alternate.pal");
                pl.init();

                pl.env(xMin, xMax, yMin, yMax, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes);
                pl.lab("X", "Y", "y = x^2 - 2x + 1");

                pl.spal0("");
                pl.col0(PLplot.Color.Blue);

                // y = x ^ 2 - 2x + 1 그래프를 그리고,
                {
                    double[] ptX = Utils.RangeInclusive(xMin, xMax, 0.01).ToArray();
                    double[] ptY = null;

                    ptY = new double[ptX.Length];
                    for (int i = 0; i < ptX.Length; i++)
                    {
                        ptY[i] = orgDrawFunc(ptX[i]);
                    }

                    pl.line(ptX, ptY);
                }

                char code = Symbol.Bullet;
                pl.col0(PLplot.Color.Blue);

                // x = 15에서 시작해 도함수의 결과에 따라 0.1씩 변위를 주며 최솟값으로 이동하는 과정을 점으로 출력
                int maxTrial = 1000;
                double anyX = 15.0; // 랜덤 값

                while (maxTrial-- > 0)
                {
                    double yPos = dfDrawFunc(anyX);
                    pl.Point(anyX, orgDrawFunc(anyX), code);

                    if (yPos.GetCloseToZeroSlope())
                    {
                        break;
                    }
                    else anyX += (yPos > 0) ? -0.1 : 0.1;
                }

                pl.eop();
                pl.gver(out var verText);
            }
        }
    }

    public static class Utils
    {
        public static IEnumerable<T> RangeInclusive<T>(T start, T stop, T step)
        {
            dynamic dStart = start;
            dynamic dStop = stop;
            dynamic dStep = step;

            if (dStep == 0)
                throw new ArgumentException("Parameter step cannot equal zero.");

            if (dStart < dStop && dStep > 0)
            {
                for (var i = dStart; i <= dStop; i += dStep)
                {
                    yield return i;
                }
            }
            else if (dStart > dStop && dStep < 0)
            {
                for (var i = dStart; i >= dStop; i += dStep)
                {
                    yield return i;
                }
            }
        }

        public static void Point(this PLStream pl, double x, double y, char code)
        {
            pl.poin(new double[] { x }, new double[] { y }, code);
        }

        public static bool GetCloseToZeroSlope(this double value)
        {
            return Math.Abs(value) < 1e-03 ? true : false;
        }
    }
}

다음과 같은 출력을 얻을 수 있습니다.

gradient_descent_2.png

보는 바와 같이 최솟값으로 잘 수렴하고 있죠! ^^




"그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#" 글을 보면, 도함수로 접근하면서 처음에는 크게 이동하다가 점차 간격이 작아지게 되는데 마찬가지로 경사 하강법도 단순하게 x의 값을 일정 수로 줄여나가기 보다 다음과 같은 식으로 이전 x 값 기준으로 줄여나가는 방식이 있습니다.

x := x - f'(x)

하지만, 단순히 위와 같이 하면 f'(x)의 반환값이 크기 때문에 x 값의 부호를 반대로 만들어 근삿값을 진동하는 식으로 접근하게 됩니다. 이런 문제를 해결하기 위해 약간의 조정값을 f'(x)에 곱해주면,

x := x - n * f'(x) // n == 학습 비율(learning rate)
                   // 예를 들어 n = 0.1

즉, 이전 코드를 다음과 같이 개선한 후,

anyX = 15.0;
double t = 0.1;

while (maxTrial-- > 0)
{
    double yPos = dfDrawFunc(anyX);
    pl.Point(anyX, orgDrawFunc(anyX), code);

    if (yPos.GetCloseToZeroSlope())
    {
        break;
    }
    else anyX -= (t * yPos);
}

결과를 보면, 훨씬 빨리 최솟값으로 수렴하는 것을 확인할 수 있습니다.

gradient_descent_3.png

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




수렴을 좀 더 빨리하기 위해, 데이터에 대한 전처리를 수행하는 과정이 바로 정규화입니다. 예를 들어 이전 글을 보면,

ML.NET 데이터 정규화
; https://www.sysnet.pe.kr/2/0/11922

click.csv 파일의 x 값 범위가 25 ~ 272에 해당하는데 이것을 z-score 정규화를 거치면 -1.7406785589738 ~ 1.94669368859505가 되어 수렴을 시작할 수 있는 랜덤 값 범위를 대폭 줄이게 됩니다.

참고로, 직관적으로 아시겠지만 ^^ 경사 하강법은,

경사 하강법
; https://ko.wikipedia.org/wiki/%EA%B2%BD%EC%82%AC_%ED%95%98%EA%B0%95%EB%B2%95

지역 근사해는 찾아도, 전역 근사해를 찾지 못할 수 있습니다. 아래의 그래프와 같은 상황들을 보면 이해가 되실 것입니다. ^^

gradient_descent_4.png

gradient_descent_5.png

이에 대한 보완으로 "확률 경사 하강법"과 "미니 배치법"이 있다고 하니 좀 더 자세한 사항은 "기초 수학으로 이해하는 머신러닝 알고리즘" 책을 보시면 되겠습니다. ^^




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]





[최초 등록일: ]
[최종 수정일: 5/31/2019 ]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer@outlook.com

비밀번호

댓글 쓴 사람
 




1  2  3  [4]  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
11950정성태6/18/2019521.NET Framework: 845. C# - 윈도우 작업 관리자와 리소스 모니터의 메모리 값을 구하는 방법
11949정성태6/18/2019312오류 유형: 547. CoreCLR Profiler 예제 프로젝트 빌드 시 컴파일 오류 유형
11948정성태6/17/2019394Linux: 15. 리눅스 환경의 Visual Studio Code에서 TFS 서버 연동
11947정성태6/17/2019459Linux: 14. 리눅스 환경에서 TFS 서버 연동
11946정성태6/17/2019476개발 환경 구성: 445. C# - MathNet으로 정규 분포를 따르는 데이터를 생성, PLplot으로 Histogram 표현파일 다운로드1
11945정성태6/25/2019462Linux: 13. node.js에서 syslog로 출력하는 방법
11944정성태6/16/2019707Linux: 12. Ubuntu 16.04/18.04에서 node.js 최신 버전 설치 방법
11943정성태6/15/2019715.NET Framework: 844. C# - 박싱과 언박싱 [1]
11942정성태6/20/2019938개발 환경 구성: 444. 로컬의 Visual Studio Code로 원격 리눅스 머신에 접속해 개발하는 방법
11941정성태6/13/2019417오류 유형: 546. "message NETSDK1057: You are using a preview version of .NET Core" 빌드 경고 없애는 방법
11940정성태6/13/2019391개발 환경 구성: 443. Visual Studio의 Connection Manager 기능(Remote SSH 관리)을 위한 명령행 도구파일 다운로드1
11939정성태6/13/2019330오류 유형: 545. Managed Debugging Assistant 'FatalExecutionEngineError'
11938정성태6/12/2019488Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류파일 다운로드1
11937정성태6/11/20191356개발 환경 구성: 442. .NET Core 3.0 preview 5를 이용해 Windows Forms/WPF 응용 프로그램 개발 [1]
11936정성태6/10/2019501Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인파일 다운로드1
11935정성태6/9/2019576.NET Framework: 843. C# - PLplot 출력을 파일이 아닌 Window 화면으로 변경
11934정성태6/7/2019474VC++: 133. typedef struct와 타입 전방 선언으로 인한 C2371 오류파일 다운로드1
11933정성태6/7/2019581VC++: 132. enum 정의를 C++11의 enum class로 바꿀 때 유의할 사항파일 다운로드1
11932정성태6/7/2019480오류 유형: 544. C++ - fatal error C1017: invalid integer constant expression파일 다운로드1
11931정성태6/6/2019520개발 환경 구성: 441. C# - CairoSharp/GtkSharp 사용을 위한 프로젝트 구성 방법
11930정성태6/26/2019701.NET Framework: 842. .NET Reflection을 대체할 System.Reflection.Metadata 소개
11929정성태6/5/2019508.NET Framework: 841. Windows Forms/C# - 클립보드에 RTF 텍스트를 복사 및 확인하는 방법
11928정성태6/5/2019620오류 유형: 543. PowerShell 확장 설치 시 "Catalog file '[...].cat' is not found in the contents of the module" 오류 발생
11927정성태6/5/2019701스크립트: 15. PowerShell ISE의 스크립트를 복사 후 PPT/Word에 붙여 넣으면 한글이 깨지는 문제 [1]
11926정성태6/4/2019567오류 유형: 542. Visual Studio - pointer to incomplete class type is not allowed
11925정성태6/4/2019678VC++: 131. Visual C++ - uuid 확장 속성과 __uuidof 확장 연산자파일 다운로드1
1  2  3  [4]  5  6  7  8  9  10  11  12  13  14  15  ...