Microsoft MVP성태의 닷넷 이야기
글쓴 사람
홈페이지
첨부 파일

C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법

일단 행렬식을 이용하면,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

범용적으로 다항식에 대한 근사를 최소 자승법(최소 제곱법)으로 구할 수 있습니다. 하지만, 만약 대상을 "1차 함수"로 직선에 대한 근사만을 구한다면 복잡한 행렬 연산 없이 for 문만으로 매개 변수를 구하는 것이 가능합니다.

가령, 지난번 예제의 행렬식을 보겠습니다.

θ0 + θ1x1 = y1
θ0 + θ1x2 = y2
...
θ0 + θ1xn = yn



AX=B
A-1AX=A-1B
X=A-1B (A-1 == 의사역행렬)

결국 중요한 것은, 위의 식에서 A-1B 연산 결과를 구하는 것인데요, 헷갈리니까 일단 의사역행렬을 A+라고 정의하고, 이것을 행렬 라이브러리를 이용하면 단순히 Matrix 타입의 PseudoInverse를 호출하는 것으로 쉽게 해결했지만 만약 직접 구하고 싶다면 다음과 같은 과정을 거쳐야 합니다.

A+ = (ATA)-1AT

따라서, 매개변수를 나타내는 행렬 X는 B 행렬까지 곱해주면서 다음과 같이 계산할 수 있습니다.

X = A+ * B
  = (ATA)-1AT * B

이제 남은 작업은 위의 식을 간략하게 바꿔주면 됩니다. ^^




이 상태에서 A 행렬을 보면 "n x 2" 행렬이고 이것의 전치 행렬(AT)은 "2 x n" 행렬이 됩니다. 또한 B 행렬도 "n x 1" 행렬임을 감안하면 연산 결과가 다음과 같이 정리될 수 있습니다.

X = (ATA)-1AT * B
  = ((2 x n) * (n x 2))-1 * (2 x n) * (n x 1)
  = (2 x 2)-1 * (2 x 1)
  = (2 x 2) * (2 x 1)
  = (2 x 1)

즉, X 행렬은 (당연히 1차 함수의 매개변수 2개를 구하는 것이므로) 언제나 "2 x 1" 행렬이 나오므로 X 행렬의 인덱스에 해당하는 값을 정리해 볼 수도 있습니다. 이 과정을 단계별로 천천히 ^^ 접근해 볼까요?





2 x 2 행렬의 역행렬은 다음과 같이 간략화할 수 있으므로,



ATA 결과의 역행렬을 구할 수 있습니다.



위의 결과를 2 x n 행렬의 AT와 연산을 하면 과정이 좀 복잡하니 어차피 행렬곱은 결합법칙이 성립하므로 뒤의 AT B 연산을 먼저 다음과 같이 정리할 수 있습니다.



마지막으로 (ATA)-1(2 x 2 행렬)에 AT * B(2 x 1 행렬)을 곱하는 것이므로 다음과 같이 최종 정리가 됩니다.



따라서 1차 방정식의 매개변수는 이렇게 단일 식으로 각각 구할 수 있습니다.






구하는 과정에 정리할 식이 좀 끼어들어서 그렇지, 사실 C# 코드로 위의 계산을 나타내면 별거 아닙니다. ^^

// 단순 for 루프를 이용한 계산
private static (double theta1, double theta0) GetEquation2(double[] xData, double[] yData)
{
    double sumAnBn = 0.0;
    double sumAn = 0.0;
    double sumBn = 0.0;
    double sumAnAn = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        sumAnBn += xData[i] * yData[i];
        sumAn += xData[i];
        sumBn += yData[i];
        sumAnAn += xData[i] * xData[i];
    }

    int n = xData.Length;
    double Q = sumAnAn * n - sumAn * sumAn;

    double theta1 = (n * sumAnBn - sumAn * sumBn) / Q;
    double theta0 = (-sumAn * sumAnBn + sumAnAn * sumBn) / Q;

    return (theta1, theta0);
}

// 행렬을 이용한 계산
private static (double theta1, double theta0) GetEquation(double[] xData, double[] yData)
{
    Matrix matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector add1 = Vector.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    Matrix matAwith1 = matA.InsertColumn(1, add1);

    Console.WriteLine(matAwith1);
    Matrix matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix pinvMatA = matAwith1.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix matX = pinvMatA * matB;

    return (matX[0, 0], matX[1, 0]);
}

당연하겠지만 행렬식을 이용했던 GetEquation 메서드와 비교해 보면,

{
    // y = theta0 + (theta1 * x)
    (double theta1, double theta0) = GetEquation(xData, yData);
    Console.WriteLine($"[method1] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method1] y = 231.545758451005 + 1.39551018043075 * x
    */
}

{
    (double theta1, double theta0) = GetEquation2(xData, yData);
    Console.WriteLine($"[method2] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method2] y = 231.545758451006 + 1.39551018043075 * x
    */
}

부동소수점 계산임을 감안해 값이 거의 동일하다는 것을 알 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]





[최초 등록일: ]
[최종 수정일: 5/28/2019 ]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer@outlook.com

비밀번호

댓글 쓴 사람
 



2019-05-28 10시35분
선형 최소 제곱법(Linear Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5579
정성태

1  2  3  [4]  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
12129정성태1/26/2020525.NET Framework: 882. C# - 키움 Open API+ 사용 시 Registry 등록 없이 KHOpenAPI.ocx 사용하는 방법
12128정성태1/26/2020195오류 유형: 591. The code execution cannot proceed because mfc100.dll was not found. Reinstalling the program may fix this problem.
12127정성태1/28/2020263.NET Framework: 881. C# DLL에서 제공하는 Win32 export 함수의 내부 동작 방식(VT Fix up Table)파일 다운로드1
12126정성태1/25/2020229.NET Framework: 880. C# - PE 파일로부터 IMAGE_COR20_HEADER 및 VTableFixups 테이블 분석파일 다운로드1
12125정성태1/24/2020136VS.NET IDE: 141. IDE0019 - Use pattern matching
12124정성태1/24/2020406VS.NET IDE: 140. IDE1006 - Naming rule violation: These words must begin with upper case characters: ...
12123정성태1/23/2020209웹: 39. Google Analytics - gtag 함수를 이용해 페이지 URL 수정 및 별도의 이벤트 생성 방법
12122정성태1/22/2020224.NET Framework: 879. C/C++의 UNREFERENCED_PARAMETER 매크로를 C#에서 우회하는 방법(IDE0060 - Remove unused parameter '...')파일 다운로드1
12121정성태1/24/2020168VS.NET IDE: 139. Visual Studio - Error List: "Could not find schema information for the ..."파일 다운로드1
12120정성태1/20/2020259.NET Framework: 878. C# DLL에서 Win32 C/C++처럼 dllexport 함수를 제공하는 방법 - 네 번째 이야기(IL 코드로 직접 구현)파일 다운로드1
12119정성태1/17/2020287디버깅 기술: 160. Windbg 확장 DLL 만들기 (3) - C#으로 만드는 방법
12118정성태1/17/2020272개발 환경 구성: 466. C# DLL에서 Win32 C/C++처럼 dllexport 함수를 제공하는 방법 - 세 번째 이야기
12117정성태1/15/2020246디버깅 기술: 159. C# - 디버깅 중인 프로세스를 강제로 다른 디버거에서 연결하는 방법파일 다운로드1
12116정성태1/15/2020212디버깅 기술: 158. Visual Studio로 디버깅 시 sos.dll 확장 명령어를 (비롯한 windbg의 다양한 기능을) 수행하는 방법
12115정성태1/14/2020166디버깅 기술: 157. C# - PEB.ProcessHeap을 이용해 디버깅 중인지 확인하는 방법파일 다운로드1
12114정성태1/13/2020367디버깅 기술: 156. C# - PDB 파일로부터 심벌(Symbol) 및 타입(Type) 정보 열거 [1]파일 다운로드3
12113정성태1/12/2020332오류 유형: 590. Visual C++ 빌드 오류 - fatal error LNK1104: cannot open file 'atls.lib'
12112정성태1/12/2020144오류 유형: 589. PowerShell - 원격 Invoke-Command 실행 시 "WinRM cannot complete the operation" 오류 발생
12111정성태3/23/2020524디버깅 기술: 155. C# - KernelMemoryIO 드라이버를 이용해 실행 프로그램을 숨기는 방법(DKOM: Direct Kernel Object Modification) [1]
12110정성태1/12/2020262디버깅 기술: 154. Patch Guard로 인해 블루 스크린(BSOD)가 발생하는 사례파일 다운로드1
12109정성태1/10/2020176오류 유형: 588. Driver 프로젝트 빌드 오류 - Inf2Cat error -2: "Inf2Cat, signability test failed."
12108정성태1/10/2020144오류 유형: 587. Kernel Driver 시작 시 127(The specified procedure could not be found.) 오류 메시지 발생
12107정성태1/10/2020261.NET Framework: 877. C# - 프로세스의 모든 핸들을 열람 - 두 번째 이야기
12106정성태1/8/2020295VC++: 136. C++ - OSR Driver Loader와 같은 Legacy 커널 드라이버 설치 프로그램 제작 [1]
12105정성태1/8/2020213디버깅 기술: 153. C# - PEB를 조작해 로드된 DLL을 숨기는 방법
12104정성태1/9/2020422DDK: 9. 커널 메모리를 읽고 쓰는 NT Legacy driver와 C# 클라이언트 프로그램 [2]
1  2  3  [4]  5  6  7  8  9  10  11  12  13  14  15  ...