Microsoft MVP성태의 닷넷 이야기
Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method) [링크 복사], [링크+제목 복사],
조회: 21166
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)

개인적으로 자주 방문하게 되는 사이트가 있는데, 마침 "기초 수학으로 이해하는 머신러닝 알고리즘" 책과 연관된 내용이 나오는군요. ^^

최소자승법 이해와 다양한 활용예 (Least Square Method)
; https://darkpgmr.tistory.com/56

책에서 최소 자승법(최소 제곱법)을 해석학적 방법으로 접근해 행렬식으로 정리하는데, 위의 글을 보면 행렬로 정리한 내용을 더 쉽게 이해할 수 있습니다. 그럼, 실습을 한번 해볼까요? ^^ 지난 글에서 설명한 click.csv로 다뤄볼 텐데요,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

ML.NET의 라이브러리를 이용하면 다음과 같이 로드해,

using Microsoft.ML.Data;

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);
    }
}

Plot 데이터를 지난번과 마찬가지로 그릴 수 있습니다.

var xyList = ctx.Data.CreateEnumerable<ClickData>(data, true);
double[] xData = xyList.Select(xy => (double)xy.X).ToArray();
double[] yData = xyList.Select(xy => (double)xy.Y).ToArray();

DrawPlotChart(xData, yData);

private static void DrawPlotChart(double[] xData, double[] yData)
{
    string chartFileName = "click.svg";

    int xMin = 0;
    int yMin = 0;

    int xMax = (int)xData.Max() + 10;
    int yMax = (int)yData.Max() + 10;

    using (var pl = new PLStream())
    {
        pl.sdev("svg");
        pl.sfnam(chartFileName);
        pl.spal0("cmap0_alternate.pal");
        pl.init();

        pl.env(xMin, xMax, yMin, yMax, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes);
        pl.lab("X", "Y", "Click");
        char code = Symbol.Bullet; // == 17;
        pl.col0(2); //Blue

        pl.poin(xData, yData, code);

        pl.eop();
        pl.gver(out var verText);
    }
}

lsm_by_matrix_0.png

자, 그럼 이제 위의 데이터 분포를 근사시킬 1차 함수를 구해야 하는데요.

θ0 + θ1x1 = y1
θ0 + θ1x2 = y2
...
θ0 + θ1xn = yn

"최소자승법 이해와 다양한 활용예 (Least Square Method)" 글에서 설명한 데로 이것은 행렬식으로 다룰 수 있고,



방정식의 θ1, θ0 요소는 결국 A 행렬의 의사 역행렬을 구해 계산하는 것으로 쉽게 처리할 수 있습니다.

AX=B
A-1AX=A-1B
X=A-1B

다행히 일반적인 역행렬과는 달리 의사 역행렬은,

의사역행렬
; https://ko.wikipedia.org/wiki/%EC%9D%98%EC%82%AC%EC%97%AD%ED%96%89%EB%A0%AC

항상 존재하며, 유일하기 때문에 안전하게 언제나 사용할 수 있습니다. 즉, 근사식에 따른 1차 함수를 언제나 구할 수 있다는 의미입니다. 자, 그럼 이걸 코드로 표현해야겠지요. ^^

우선, A 행렬은 Click 데이터의 X 데이터와 함께 두 번째 칼럼의 값이 1로 채워져 있는 것입니다. 이것을 MathNet의 행렬로 다음과 같이 만들어 줄 수 있습니다.

Matrix<double> matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
Vector<double> add1 = Vector<double>.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
Matrix<double> matAwith1 = matA.InsertColumn(1, add1);
/* matAwith1 행렬
235   1
216   1
148   1
 35   1
 85   1
204   1
 49   1
 25   1
 ..  ..
159   1
159   1
 59   1
198   1
*/

남은 작업은 의사 역행렬을 구하고 B 행렬과 곱해주면 방정식의 (θ1, θ0) 값으로 이뤄진 행렬을 얻게 됩니다.

Matrix<double> matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

Matrix<double> pinvMatA = matAwith1.PseudoInverse();
Matrix<double> matX = pinvMatA * matB;

double theta1 = mat[1, 1];
double theta0 = mat[1, 0];

/*
matX[0, 0] == θ1
matX[1, 0] == θ0
*/

실제로 연산을 해보면 (1.39551018043075, 231.545758451005) 값이 얻어지는데, 따라서 Click 데이터를 근사하는 방정식은 다음과 같이 이뤄집니다.

Console.WriteLine($"y = {theta0} + {theta1} * x");

/* 출력 결과
y = 231.545758451005 + 1.39551018043075 * x
*/

계산 끝났군요. ^^ 이제 이렇게 구한 1차 방정식을 Plot 차트에 추가하면,

Func<double, double> func =
    (x) => theta0 + theta1 * x;

double y1 = func(0);
double y2 = func(300);

DrawPlotChart(xData, yData, new double[] { 0, 300 }, new double[] { y1, y2 });

private static void DrawPlotChart(double[] xData, double[] yData, double [] ptX, double [] ptY)
{
    ...[생략]...

        pl.poin(xData, yData, code);
        pl.line(ptX, ptY);

    ...[생략]...
}

다음과 같이 근사하게, 잘 근사한 직선을 볼 수 있습니다. ^^

lsm_by_matrix_1.png

(첨부 파일은 이 글의 예제 프로젝트를 포함합니다.)




.NET Core 프로젝트에서 "PLplot" 관련해 다음과 같은 오류가 발생한다면?

Unhandled Exception: System.DllNotFoundException: Unable to load DLL 'plplot' or one of its dependencies: The specified module could not be found. (Exception from HRESULT: 0x8007007E)
   at PLplot.Native.mkstrm(Int32& p_strm)
   at PLplot.PLStream..ctor() in C:\projects\plplotnet\PLplotNet\PLStream.cs:line 23
   at Program.DrawPlotChart(IEnumerable`1 xyList) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 41
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 20

이번엔 지난번 상황과 다소 다릅니다. .NET Core 2.1 프로젝트였는데, 로드된 PLplotNet.dll은 다음의 경로였고,

%USERPROFILE%\.nuget\packages\plplot\5.13.7\lib\netstandard2.0\PLplotNet.dll

plplot의 네이티브 모듈들은 정상적으로 "%USERPROFILE%\.nuget\packages\plplot\5.13.7\runtimes\win-x64\native"에 위치하고 있었습니다. 문제의 원인은, .NET Core 2.1 프로젝트의 "Platform"이 "AnyCPU"였다는 것으로 예전에 설명한 적이 있는,

.NET Core 오류 - 0x80131620 Unable to load DLL 'libuv'
; https://www.sysnet.pe.kr/2/0/11389

상황과 동일한 오류입니다. 따라서, "Platform target"을 "AnyCPU"가 아닌 "x64"로 명시적인 설정을 하면 오류가 발생하지 않습니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 9/19/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 136  137  138  139  140  141  142  143  144  145  [146]  147  148  149  150  ...
NoWriterDateCnt.TitleFile(s)
1403정성태1/14/201331979.NET Framework: 357. .NET 4.5의 2GB 힙 한계 극복
1402정성태1/14/201332562오류 유형: 166. SmtpClient.Send 오류 - net_io_connectionclosed
1401정성태1/11/201329877.NET Framework: 356. (공개키를 담은) 자바의 key 파일을 닷넷의 RSACryptoServiceProvider에서 사용하는 방법 [2]파일 다운로드1
1400정성태1/10/201329017Windows: 69. 작업표시줄의 터치 키보드(Touch Keyboard) 없애는 방법 [3]
1399정성태1/9/201324665.NET Framework: 355. 닷넷 환경이 왜 C/C++보다 느릴까요? [8]
1398정성태1/8/201325145오류 유형: 165. 새로 설치한 Visual Studio 2010의 Team Explorer 실행시 비정상 종료가 된다면?
1397정성태1/3/201328623Windows: 68. 윈도우 설치 ISO 이미지를 USB 하드에 적용하는 방법 [2]
1396정성태12/27/201229822사물인터넷: 2. 넷두이노 - 4.2.0 펌웨어 업데이트 방법 [1]파일 다운로드1
1395정성태12/26/201220691.NET Framework: 354. x64 - AspCompat과 STA COM 개체가 성능에 미치는 영향
1394정성태12/25/201222134.NET Framework: 353. x86 - AspCompat과 STA COM 개체가 성능에 미치는 영향
1393정성태12/25/201222495.NET Framework: 352. x64에서 필수로 지정하도록 바뀐 STAThread 특성 [2]
1392정성태12/21/201232503사물인터넷: 1. .NET Micro Framework - 넷두이노 플러스 [7]
1391정성태12/21/201225889.NET Framework: 351. JavaScriptSerializer, DataContractJsonSerializer, Json.NET [3]파일 다운로드1
1390정성태12/20/201223965.NET Framework: 350. String 데이터를 Stream으로 변환하는 방법 [2]
1389정성태12/12/201222285.NET Framework: 349. .NET Thread 인스턴스로부터 COM Apartment 유형 확인하는 방법파일 다운로드1
1388정성태12/12/201223344.NET Framework: 348. .NET x64 응용 프로그램에서 Teb 주소를 구하는 방법파일 다운로드1
1387정성태12/12/201228265VC++: 64. x64 Visual C++에서 TEB 주소 구하는 방법
1386정성태12/12/201229988디버깅 기술: 53. windbg - 덤프 파일로부터 네이티브 DLL을 추출하는 방법 [1]
1385정성태12/12/201225048디버깅 기술: 52. Windbg - The version of SOS does not match the version of CLR you are debugging.
1384정성태12/12/201229868개발 환경 구성: 178. System32 폴더의 64비트 DLL을 32비트 Depends.exe에서 보는 방법
1383정성태12/10/201225787개발 환경 구성: 177. 기업용 메신저를 위한 Office Communicator Server 2007 설치 [1]
1382정성태12/8/201228644개발 환경 구성: 176. WebPagetest 서버 - 설치 및 테스트
1381정성태12/5/201227157.NET Framework: 347. C# - 프로세스(EXE) 수준의 Singleton 개체 생성 [2]파일 다운로드1
1380정성태11/28/201237193.NET Framework: 346. 닷넷 개발자에게 Node.js의 의미 [17]
1379정성태11/26/201230320.NET Framework: 345. C# 부호(+, -)에 대한 비트 변환
1378정성태11/22/201231658Java: 14. 안드로이드 - Hello World 실습 [7]
... 136  137  138  139  140  141  142  143  144  145  [146]  147  148  149  150  ...