Microsoft MVP성태의 닷넷 이야기
Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method) [링크 복사], [링크+제목 복사],
조회: 21114
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)

개인적으로 자주 방문하게 되는 사이트가 있는데, 마침 "기초 수학으로 이해하는 머신러닝 알고리즘" 책과 연관된 내용이 나오는군요. ^^

최소자승법 이해와 다양한 활용예 (Least Square Method)
; https://darkpgmr.tistory.com/56

책에서 최소 자승법(최소 제곱법)을 해석학적 방법으로 접근해 행렬식으로 정리하는데, 위의 글을 보면 행렬로 정리한 내용을 더 쉽게 이해할 수 있습니다. 그럼, 실습을 한번 해볼까요? ^^ 지난 글에서 설명한 click.csv로 다뤄볼 텐데요,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

ML.NET의 라이브러리를 이용하면 다음과 같이 로드해,

using Microsoft.ML.Data;

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);
    }
}

Plot 데이터를 지난번과 마찬가지로 그릴 수 있습니다.

var xyList = ctx.Data.CreateEnumerable<ClickData>(data, true);
double[] xData = xyList.Select(xy => (double)xy.X).ToArray();
double[] yData = xyList.Select(xy => (double)xy.Y).ToArray();

DrawPlotChart(xData, yData);

private static void DrawPlotChart(double[] xData, double[] yData)
{
    string chartFileName = "click.svg";

    int xMin = 0;
    int yMin = 0;

    int xMax = (int)xData.Max() + 10;
    int yMax = (int)yData.Max() + 10;

    using (var pl = new PLStream())
    {
        pl.sdev("svg");
        pl.sfnam(chartFileName);
        pl.spal0("cmap0_alternate.pal");
        pl.init();

        pl.env(xMin, xMax, yMin, yMax, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes);
        pl.lab("X", "Y", "Click");
        char code = Symbol.Bullet; // == 17;
        pl.col0(2); //Blue

        pl.poin(xData, yData, code);

        pl.eop();
        pl.gver(out var verText);
    }
}

lsm_by_matrix_0.png

자, 그럼 이제 위의 데이터 분포를 근사시킬 1차 함수를 구해야 하는데요.

θ0 + θ1x1 = y1
θ0 + θ1x2 = y2
...
θ0 + θ1xn = yn

"최소자승법 이해와 다양한 활용예 (Least Square Method)" 글에서 설명한 데로 이것은 행렬식으로 다룰 수 있고,



방정식의 θ1, θ0 요소는 결국 A 행렬의 의사 역행렬을 구해 계산하는 것으로 쉽게 처리할 수 있습니다.

AX=B
A-1AX=A-1B
X=A-1B

다행히 일반적인 역행렬과는 달리 의사 역행렬은,

의사역행렬
; https://ko.wikipedia.org/wiki/%EC%9D%98%EC%82%AC%EC%97%AD%ED%96%89%EB%A0%AC

항상 존재하며, 유일하기 때문에 안전하게 언제나 사용할 수 있습니다. 즉, 근사식에 따른 1차 함수를 언제나 구할 수 있다는 의미입니다. 자, 그럼 이걸 코드로 표현해야겠지요. ^^

우선, A 행렬은 Click 데이터의 X 데이터와 함께 두 번째 칼럼의 값이 1로 채워져 있는 것입니다. 이것을 MathNet의 행렬로 다음과 같이 만들어 줄 수 있습니다.

Matrix<double> matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
Vector<double> add1 = Vector<double>.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
Matrix<double> matAwith1 = matA.InsertColumn(1, add1);
/* matAwith1 행렬
235   1
216   1
148   1
 35   1
 85   1
204   1
 49   1
 25   1
 ..  ..
159   1
159   1
 59   1
198   1
*/

남은 작업은 의사 역행렬을 구하고 B 행렬과 곱해주면 방정식의 (θ1, θ0) 값으로 이뤄진 행렬을 얻게 됩니다.

Matrix<double> matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

Matrix<double> pinvMatA = matAwith1.PseudoInverse();
Matrix<double> matX = pinvMatA * matB;

double theta1 = mat[1, 1];
double theta0 = mat[1, 0];

/*
matX[0, 0] == θ1
matX[1, 0] == θ0
*/

실제로 연산을 해보면 (1.39551018043075, 231.545758451005) 값이 얻어지는데, 따라서 Click 데이터를 근사하는 방정식은 다음과 같이 이뤄집니다.

Console.WriteLine($"y = {theta0} + {theta1} * x");

/* 출력 결과
y = 231.545758451005 + 1.39551018043075 * x
*/

계산 끝났군요. ^^ 이제 이렇게 구한 1차 방정식을 Plot 차트에 추가하면,

Func<double, double> func =
    (x) => theta0 + theta1 * x;

double y1 = func(0);
double y2 = func(300);

DrawPlotChart(xData, yData, new double[] { 0, 300 }, new double[] { y1, y2 });

private static void DrawPlotChart(double[] xData, double[] yData, double [] ptX, double [] ptY)
{
    ...[생략]...

        pl.poin(xData, yData, code);
        pl.line(ptX, ptY);

    ...[생략]...
}

다음과 같이 근사하게, 잘 근사한 직선을 볼 수 있습니다. ^^

lsm_by_matrix_1.png

(첨부 파일은 이 글의 예제 프로젝트를 포함합니다.)




.NET Core 프로젝트에서 "PLplot" 관련해 다음과 같은 오류가 발생한다면?

Unhandled Exception: System.DllNotFoundException: Unable to load DLL 'plplot' or one of its dependencies: The specified module could not be found. (Exception from HRESULT: 0x8007007E)
   at PLplot.Native.mkstrm(Int32& p_strm)
   at PLplot.PLStream..ctor() in C:\projects\plplotnet\PLplotNet\PLStream.cs:line 23
   at Program.DrawPlotChart(IEnumerable`1 xyList) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 41
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 20

이번엔 지난번 상황과 다소 다릅니다. .NET Core 2.1 프로젝트였는데, 로드된 PLplotNet.dll은 다음의 경로였고,

%USERPROFILE%\.nuget\packages\plplot\5.13.7\lib\netstandard2.0\PLplotNet.dll

plplot의 네이티브 모듈들은 정상적으로 "%USERPROFILE%\.nuget\packages\plplot\5.13.7\runtimes\win-x64\native"에 위치하고 있었습니다. 문제의 원인은, .NET Core 2.1 프로젝트의 "Platform"이 "AnyCPU"였다는 것으로 예전에 설명한 적이 있는,

.NET Core 오류 - 0x80131620 Unable to load DLL 'libuv'
; https://www.sysnet.pe.kr/2/0/11389

상황과 동일한 오류입니다. 따라서, "Platform target"을 "AnyCPU"가 아닌 "x64"로 명시적인 설정을 하면 오류가 발생하지 않습니다.




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 9/19/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 31  32  33  [34]  35  36  37  38  39  40  41  42  43  44  45  ...
NoWriterDateCnt.TitleFile(s)
13089정성태6/28/202215078개발 환경 구성: 646. HOSTS 파일 변경 시 Edge 브라우저에 반영하는 방법
13088정성태6/27/202213503개발 환경 구성: 645. "Developer Command Prompt for VS 2022" 명령행 환경의 폰트를 바꾸는 방법
13087정성태6/23/202217487스크립트: 41. 파이썬 - FastAPI / uvicorn 호스팅 환경에서 asyncio 사용하는 방법 [1]
13086정성태6/22/202216891.NET Framework: 2026. C# 11 - 문자열 보간 개선 2가지파일 다운로드1
13085정성태6/22/202216661.NET Framework: 2025. C# 11 - 원시 문자열 리터럴(raw string literals)파일 다운로드1
13084정성태6/21/202215440개발 환경 구성: 644. Windows - 파이썬 2.7을 msi 설치 없이 구성하는 방법
13083정성태6/20/202216044.NET Framework: 2024. .NET 7에 도입된 GC의 메모리 해제에 대한 segment와 region의 차이점 [2]
13082정성태6/19/202215106.NET Framework: 2023. C# - Process의 I/O 사용량을 보여주는 GetProcessIoCounters Win32 API파일 다운로드1
13081정성태6/17/202214252.NET Framework: 2022. C# - .NET 7 Preview 5 신규 기능 - System.IO.Stream ReadExactly / ReadAtLeast파일 다운로드1
13080정성태6/17/202215236개발 환경 구성: 643. Visual Studio 2022 17.2 버전에서 C# 11 또는 .NET 7.0 preview 적용
13079정성태6/17/202212682오류 유형: 814. 파이썬 - Error: The file/path provided (...) does not appear to exist
13078정성태6/16/202215835.NET Framework: 2021. WPF - UI Thread와 Render Thread파일 다운로드1
13077정성태6/15/202216851스크립트: 40. 파이썬 - PostgreSQL 환경 구성
13075정성태6/15/202213691Linux: 50. Linux - apt와 apt-get의 차이 [2]
13074정성태6/13/202214721.NET Framework: 2020. C# - NTFS 파일에 사용자 정의 속성값 추가하는 방법파일 다운로드1
13073정성태6/12/202214814Windows: 207. Windows Server 2022에 도입된 WSL 2
13072정성태6/10/202215048Linux: 49. Linux - ls 명령어로 출력되는 디렉터리 색상 변경 방법
13071정성태6/9/202215704스크립트: 39. Python에서 cx_Oracle 환경 구성
13070정성태6/8/202216391오류 유형: 813. Windows 11에서 입력 포커스가 바뀌는 문제 [1]
13069정성태5/26/202218374.NET Framework: 2019. C# - .NET에서 제공하는 3가지 Timer 비교 [2]
13068정성태5/24/202217042.NET Framework: 2018. C# - 일정 크기를 할당하는 동안 GC를 (가능한) 멈추는 방법 [1]파일 다운로드1
13067정성태5/23/202215151Windows: 206. Outlook - 1년 이상 지난 메일이 기본적으로 안 보이는 문제
13066정성태5/23/202214628Windows: 205. Windows 11 - Windows + S(또는 Q)로 뜨는 작업 표시줄의 검색 바가 동작하지 않는 경우
13065정성태5/20/202215859.NET Framework: 2017. C# - Windows I/O Ring 소개 [2]파일 다운로드1
13064정성태5/18/202215227.NET Framework: 2016. C# - JIT 컴파일러의 인라인 메서드 처리 유무
13063정성태5/18/202215617.NET Framework: 2015. C# - 인라인 메서드(inline methods)
... 31  32  33  [34]  35  36  37  38  39  40  41  42  43  44  45  ...