Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법

일단 행렬식을 이용하면,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

범용적으로 다항식에 대한 근사를 최소 자승법(최소 제곱법)으로 구할 수 있습니다. 하지만, 만약 대상을 "1차 함수"로 직선에 대한 근사만을 구한다면 복잡한 행렬 연산 없이 for 문만으로 매개 변수를 구하는 것이 가능합니다.

가령, 지난번 예제의 행렬식을 보겠습니다.

θ0 + θ1x1 = y1
θ0 + θ1x2 = y2
...
θ0 + θ1xn = yn



AX=B
A-1AX=A-1B
X=A-1B (A-1 == 의사역행렬)

결국 중요한 것은, 위의 식에서 A-1B 연산 결과를 구하는 것인데요, 헷갈리니까 일단 의사역행렬을 A+라고 정의하고, 이것을 행렬 라이브러리를 이용하면 단순히 Matrix 타입의 PseudoInverse를 호출하는 것으로 쉽게 해결했지만 만약 직접 구하고 싶다면 다음과 같은 과정을 거쳐야 합니다.

A+ = (ATA)-1AT

따라서, 매개변수를 나타내는 행렬 X는 B 행렬까지 곱해주면서 다음과 같이 계산할 수 있습니다.

X = A+ * B
  = (ATA)-1AT * B

이제 남은 작업은 위의 식을 간략하게 바꿔주면 됩니다. ^^




이 상태에서 A 행렬을 보면 "n x 2" 행렬이고 이것의 전치 행렬(AT)은 "2 x n" 행렬이 됩니다. 또한 B 행렬도 "n x 1" 행렬임을 감안하면 연산 결과가 다음과 같이 정리될 수 있습니다.

X = (ATA)-1AT * B
  = ((2 x n) * (n x 2))-1 * (2 x n) * (n x 1)
  = (2 x 2)-1 * (2 x 1)
  = (2 x 2) * (2 x 1)
  = (2 x 1)

즉, X 행렬은 (당연히 1차 함수의 매개변수 2개를 구하는 것이므로) 언제나 "2 x 1" 행렬이 나오므로 X 행렬의 인덱스에 해당하는 값을 정리해 볼 수도 있습니다. 이 과정을 단계별로 천천히 ^^ 접근해 볼까요?





2 x 2 행렬의 역행렬은 다음과 같이 간략화할 수 있으므로,



ATA 결과의 역행렬을 구할 수 있습니다.



위의 결과를 2 x n 행렬의 AT와 연산을 하면 과정이 좀 복잡하니 어차피 행렬곱은 결합법칙이 성립하므로 뒤의 AT B 연산을 먼저 다음과 같이 정리할 수 있습니다.



마지막으로 (ATA)-1(2 x 2 행렬)에 AT * B(2 x 1 행렬)을 곱하는 것이므로 다음과 같이 최종 정리가 됩니다.



따라서 1차 방정식의 매개변수는 이렇게 단일 식으로 각각 구할 수 있습니다.






구하는 과정에 정리할 식이 좀 끼어들어서 그렇지, 사실 C# 코드로 위의 계산을 나타내면 별거 아닙니다. ^^

// 단순 for 루프를 이용한 계산
private static (double theta1, double theta0) GetEquation2(double[] xData, double[] yData)
{
    double sumAnBn = 0.0;
    double sumAn = 0.0;
    double sumBn = 0.0;
    double sumAnAn = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        sumAnBn += xData[i] * yData[i];
        sumAn += xData[i];
        sumBn += yData[i];
        sumAnAn += xData[i] * xData[i];
    }

    int n = xData.Length;
    double Q = sumAnAn * n - sumAn * sumAn;

    double theta1 = (n * sumAnBn - sumAn * sumBn) / Q;
    double theta0 = (-sumAn * sumAnBn + sumAnAn * sumBn) / Q;

    return (theta1, theta0);
}

// 행렬을 이용한 계산
private static (double theta1, double theta0) GetEquation(double[] xData, double[] yData)
{
    Matrix matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector add1 = Vector.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    Matrix matAwith1 = matA.InsertColumn(1, add1);

    Console.WriteLine(matAwith1);
    Matrix matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix pinvMatA = matAwith1.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix matX = pinvMatA * matB;

    return (matX[0, 0], matX[1, 0]);
}

당연하겠지만 행렬식을 이용했던 GetEquation 메서드와 비교해 보면,

{
    // y = theta0 + (theta1 * x)
    (double theta1, double theta0) = GetEquation(xData, yData);
    Console.WriteLine($"[method1] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method1] y = 231.545758451005 + 1.39551018043075 * x
    */
}

{
    (double theta1, double theta0) = GetEquation2(xData, yData);
    Console.WriteLine($"[method2] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method2] y = 231.545758451006 + 1.39551018043075 * x
    */
}

부동소수점 계산임을 감안해 값이 거의 동일하다는 것을 알 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 5/28/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2019-05-28 10시35분
선형 최소 제곱법(Linear Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5579
정성태

... 136  137  138  139  140  141  [142]  143  144  145  146  147  148  149  150  ...
NoWriterDateCnt.TitleFile(s)
1505정성태9/26/201375397기타: 35. Microsoft Office 2007 인증 생략하는 방법 [10]
1504정성태9/24/201330283.NET Framework: 387. UDP 브로드캐스팅을 이용해 서비스 측의 IP 주소를 구하는 방법 [1]파일 다운로드1
1503정성태9/21/201335447개발 환경 구성: 199. Visual Studio - github 연동 [7]
1502정성태9/21/201339062개발 환경 구성: 198. Visual Studio - git을 이용한 로컬 소스 컨트롤
1501정성태9/21/201346159개발 환경 구성: 197. Visual Studio를 위한 Git 환경 설정 [5]
1500정성태9/20/201345130.NET Framework: 386. C# 버전의 한글 형태소 분석기 [1]파일 다운로드1
1499정성태9/20/201321717개발 환경 구성: 196. Windows Azure - Cloud Service의 인스턴스 타입 변경하는 방법
1498정성태9/20/201327810Windows: 76. 윈도우 8.1 / 서버 2012 R2 마이그레이션 [5]
1497정성태9/20/201360110웹: 28. IE 11로 바꾼 후 발생하는 문제 정리
1496정성태9/20/201332407Windows: 75. 윈도우 8.1, 2012 R2 설치 후 원격 접속이 안 되는 문제
1495정성태9/20/201323547웹: 27. IE 11 - YBM Sisa.com에서 검색된 영단어의 발음 기호가 안 나오는 문제
1494정성태9/13/201333151.NET Framework: 385. Html Agility Pack 소개 - 웹 문서에서 텍스트만 분리하는 방법 [2]파일 다운로드1
1493정성태9/13/201334934.NET Framework: 384. WebClient.DownloadString 문자열 인코딩 문제
1492정성태9/13/201322357오류 유형: 186. The .NET assembly 'Microsoft.Vsa' could not be found.
1491정성태9/9/201325480.NET Framework: 383. RSAParameters의 ToXmlString과 ExportParameters의 결과 비교
1490정성태9/7/201360483기타: 34. 도서: 시작하세요! C# 프로그래밍: 기본 문법부터 실전 예제까지 [7]
1489정성태9/4/201344923오류 유형: 185. 오피스 워드 파일이 저장되지 않는 문제 [2]
1488정성태8/27/201329064.NET Framework: 382. WCF에서 DataSet을 binary encoding으로 직렬화하는 방법파일 다운로드1
1487정성태8/27/201331371개발 환경 구성: 195. 로컬 PC에서의 WCF 통신을 Fiddler로 보는 방법 [1]
1486정성태8/27/201328873.NET Framework: 381. SqlCommand를 이용해 Microsoft SQL 서버의 쿼리 실행 계획을 구하는 방법파일 다운로드1
1485정성태8/26/201332558.NET Framework: 380. 프로세스 스스로 풀 덤프 남기는 방법 [3]파일 다운로드1
1484정성태8/23/201326825제니퍼 .NET: 24. 제니퍼 닷넷 적용 사례 (4) - GZIP 인코딩으로 인한 성능 하락
1483정성태8/23/201326936.NET Framework: 379. System.IO.MemoryStream, ArraySegment&lt;T&gt; 의 효율적인 사용법 [1]
1482정성태8/23/201320398.NET Framework: 378. Java / C# - 정수의 부호 유무에 따른 16진수 문자열 변환
1481정성태8/22/201321211오류 유형: 184. PaaS 유형(Cloud Services)의 Azure VM에 연결할 때 계정 만료 에러가 발생하는 경우
1480정성태8/22/201337863개발 환경 구성: 194. 윈도우 서버의 80 포트에 대한 port forwarding 설정 방법파일 다운로드1
... 136  137  138  139  140  141  [142]  143  144  145  146  147  148  149  150  ...