Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법

일단 행렬식을 이용하면,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

범용적으로 다항식에 대한 근사를 최소 자승법(최소 제곱법)으로 구할 수 있습니다. 하지만, 만약 대상을 "1차 함수"로 직선에 대한 근사만을 구한다면 복잡한 행렬 연산 없이 for 문만으로 매개 변수를 구하는 것이 가능합니다.

가령, 지난번 예제의 행렬식을 보겠습니다.

θ0 + θ1x1 = y1
θ0 + θ1x2 = y2
...
θ0 + θ1xn = yn



AX=B
A-1AX=A-1B
X=A-1B (A-1 == 의사역행렬)

결국 중요한 것은, 위의 식에서 A-1B 연산 결과를 구하는 것인데요, 헷갈리니까 일단 의사역행렬을 A+라고 정의하고, 이것을 행렬 라이브러리를 이용하면 단순히 Matrix 타입의 PseudoInverse를 호출하는 것으로 쉽게 해결했지만 만약 직접 구하고 싶다면 다음과 같은 과정을 거쳐야 합니다.

A+ = (ATA)-1AT

따라서, 매개변수를 나타내는 행렬 X는 B 행렬까지 곱해주면서 다음과 같이 계산할 수 있습니다.

X = A+ * B
  = (ATA)-1AT * B

이제 남은 작업은 위의 식을 간략하게 바꿔주면 됩니다. ^^




이 상태에서 A 행렬을 보면 "n x 2" 행렬이고 이것의 전치 행렬(AT)은 "2 x n" 행렬이 됩니다. 또한 B 행렬도 "n x 1" 행렬임을 감안하면 연산 결과가 다음과 같이 정리될 수 있습니다.

X = (ATA)-1AT * B
  = ((2 x n) * (n x 2))-1 * (2 x n) * (n x 1)
  = (2 x 2)-1 * (2 x 1)
  = (2 x 2) * (2 x 1)
  = (2 x 1)

즉, X 행렬은 (당연히 1차 함수의 매개변수 2개를 구하는 것이므로) 언제나 "2 x 1" 행렬이 나오므로 X 행렬의 인덱스에 해당하는 값을 정리해 볼 수도 있습니다. 이 과정을 단계별로 천천히 ^^ 접근해 볼까요?





2 x 2 행렬의 역행렬은 다음과 같이 간략화할 수 있으므로,



ATA 결과의 역행렬을 구할 수 있습니다.



위의 결과를 2 x n 행렬의 AT와 연산을 하면 과정이 좀 복잡하니 어차피 행렬곱은 결합법칙이 성립하므로 뒤의 AT B 연산을 먼저 다음과 같이 정리할 수 있습니다.



마지막으로 (ATA)-1(2 x 2 행렬)에 AT * B(2 x 1 행렬)을 곱하는 것이므로 다음과 같이 최종 정리가 됩니다.



따라서 1차 방정식의 매개변수는 이렇게 단일 식으로 각각 구할 수 있습니다.






구하는 과정에 정리할 식이 좀 끼어들어서 그렇지, 사실 C# 코드로 위의 계산을 나타내면 별거 아닙니다. ^^

// 단순 for 루프를 이용한 계산
private static (double theta1, double theta0) GetEquation2(double[] xData, double[] yData)
{
    double sumAnBn = 0.0;
    double sumAn = 0.0;
    double sumBn = 0.0;
    double sumAnAn = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        sumAnBn += xData[i] * yData[i];
        sumAn += xData[i];
        sumBn += yData[i];
        sumAnAn += xData[i] * xData[i];
    }

    int n = xData.Length;
    double Q = sumAnAn * n - sumAn * sumAn;

    double theta1 = (n * sumAnBn - sumAn * sumBn) / Q;
    double theta0 = (-sumAn * sumAnBn + sumAnAn * sumBn) / Q;

    return (theta1, theta0);
}

// 행렬을 이용한 계산
private static (double theta1, double theta0) GetEquation(double[] xData, double[] yData)
{
    Matrix matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector add1 = Vector.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    Matrix matAwith1 = matA.InsertColumn(1, add1);

    Console.WriteLine(matAwith1);
    Matrix matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix pinvMatA = matAwith1.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix matX = pinvMatA * matB;

    return (matX[0, 0], matX[1, 0]);
}

당연하겠지만 행렬식을 이용했던 GetEquation 메서드와 비교해 보면,

{
    // y = theta0 + (theta1 * x)
    (double theta1, double theta0) = GetEquation(xData, yData);
    Console.WriteLine($"[method1] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method1] y = 231.545758451005 + 1.39551018043075 * x
    */
}

{
    (double theta1, double theta0) = GetEquation2(xData, yData);
    Console.WriteLine($"[method2] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method2] y = 231.545758451006 + 1.39551018043075 * x
    */
}

부동소수점 계산임을 감안해 값이 거의 동일하다는 것을 알 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 5/28/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2019-05-28 10시35분
선형 최소 제곱법(Linear Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5579
정성태

... 151  152  153  154  155  156  157  158  159  160  161  162  [163]  164  165  ...
NoWriterDateCnt.TitleFile(s)
972정성태1/7/201124257개발 환경 구성: 95. SQL Server 2008 R2 이하 버전 정보 확인
971정성태1/5/201133833.NET Framework: 199. .NET 코드 - Named Pipe 닷넷 서버와 VC++ 클라이언트 제작 [2]파일 다운로드1
970정성태1/4/201134348.NET Framework: 198. 윈도우 응용 프로그램에 Facebook 로그인 연동 [1]파일 다운로드1
969정성태12/31/201040429VC++: 45. Winsock 2 Layered Service Provider - Visual Studio 2010용 프로젝트 [1]파일 다운로드1
968정성태12/30/201026710개발 환경 구성: 94. 개발자가 선택할 수 있는 윈도우에서의 네트워크 프로그래밍 기술 [2]
967정성태12/27/201028452.NET Framework: 197. .NET 코드 - 단일 Process 실행파일 다운로드1
966정성태12/26/201026386.NET Framework: 196. .NET 코드 - 창 흔드는 효과파일 다운로드1
965정성태12/25/201027909개발 환경 구성: 93. MSBuild를 이용한 닷넷 응용프로그램의 다중 어셈블리 출력 빌드파일 다운로드1
964정성태12/21/2010143090개발 환경 구성: 92. 윈도우 서버 환경에서, 최대 생성 가능한 소켓(socket) 연결 수는 얼마일까? [14]
963정성태12/13/201027974개발 환경 구성: 91. MSBuild를 이용한 닷넷 응용프로그램의 플랫폼(x86/x64)별 빌드 [2]파일 다운로드1
962정성태12/10/201022777오류 유형: 110. GAC 등록 - Failure adding assembly to the cache: Invalid file or assembly name.
961정성태12/10/201099863개발 환경 구성: 90. 닷넷에서 접근해보는 PostgreSQL DB [5]
960정성태12/8/201045181.NET Framework: 195. .NET에서 코어(Core) 관련 CPU 정보 알아내는 방법파일 다운로드1
959정성태12/8/201031982.NET Framework: 194. Facebook 연동 - API Error Description: Invalid OAuth 2.0 Access Token
958정성태12/7/201028982개발 환경 구성: 89. 배치(batch) 파일에서 또 다른 배치 파일을 동기 방식으로 실행 및 반환값 얻기 [2]
957정성태12/6/201031747디버깅 기술: 31. Windbg - Visual Studio 디버그 상태에서 종료해 버리는 응용 프로그램 [3]
953정성태11/28/201036995.NET Framework: 193. 페이스북(Facebook) 계정으로 로그인하는 C# 웹 사이트 제작 [5]
952정성태11/25/201025393.NET Framework: 192. GC의 부하는 상대적인 것! [4]
950정성태11/18/201076774.NET Framework: 191. ClickOnce - 관리자 권한 상승하는 방법 [17]파일 다운로드2
954정성태11/29/201048781    답변글 .NET Framework: 191.1. [답변] 클릭원스 - 요청한 작업을 수행하려면 권한 상승이 필요합니다. (Exception from HRESULT: 0x800702E4) [2]
949정성태11/16/201027294오류 유형: 109. System.ServiceModel.Security.SecurityNegotiationException
948정성태11/16/201036158.NET Framework: 190. 트위터 계정으로 로그인하는 C# 웹 사이트 제작 [7]파일 다운로드1
947정성태11/14/201041737.NET Framework: 189. Mono Cecil로 만들어 보는 .NET Decompiler [1]파일 다운로드1
946정성태11/11/201041618.NET Framework: 188. .NET 64비트 응용 프로그램에서 왜 (2GB) OutOfMemoryException 예외가 발생할까? [1]파일 다운로드1
945정성태11/11/201025103VC++: 44. C++/CLI 컴파일 오류 - error C4368: mixed types are not supported
944정성태11/11/201031641VC++: 43. C++/CLI 컴파일 오류 - error C2872: 'IServiceProvider' : ambiguous symbol could be ...
... 151  152  153  154  155  156  157  158  159  160  161  162  [163]  164  165  ...