Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법

일단 행렬식을 이용하면,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

범용적으로 다항식에 대한 근사를 최소 자승법(최소 제곱법)으로 구할 수 있습니다. 하지만, 만약 대상을 "1차 함수"로 직선에 대한 근사만을 구한다면 복잡한 행렬 연산 없이 for 문만으로 매개 변수를 구하는 것이 가능합니다.

가령, 지난번 예제의 행렬식을 보겠습니다.

θ0 + θ1x1 = y1
θ0 + θ1x2 = y2
...
θ0 + θ1xn = yn



AX=B
A-1AX=A-1B
X=A-1B (A-1 == 의사역행렬)

결국 중요한 것은, 위의 식에서 A-1B 연산 결과를 구하는 것인데요, 헷갈리니까 일단 의사역행렬을 A+라고 정의하고, 이것을 행렬 라이브러리를 이용하면 단순히 Matrix 타입의 PseudoInverse를 호출하는 것으로 쉽게 해결했지만 만약 직접 구하고 싶다면 다음과 같은 과정을 거쳐야 합니다.

A+ = (ATA)-1AT

따라서, 매개변수를 나타내는 행렬 X는 B 행렬까지 곱해주면서 다음과 같이 계산할 수 있습니다.

X = A+ * B
  = (ATA)-1AT * B

이제 남은 작업은 위의 식을 간략하게 바꿔주면 됩니다. ^^




이 상태에서 A 행렬을 보면 "n x 2" 행렬이고 이것의 전치 행렬(AT)은 "2 x n" 행렬이 됩니다. 또한 B 행렬도 "n x 1" 행렬임을 감안하면 연산 결과가 다음과 같이 정리될 수 있습니다.

X = (ATA)-1AT * B
  = ((2 x n) * (n x 2))-1 * (2 x n) * (n x 1)
  = (2 x 2)-1 * (2 x 1)
  = (2 x 2) * (2 x 1)
  = (2 x 1)

즉, X 행렬은 (당연히 1차 함수의 매개변수 2개를 구하는 것이므로) 언제나 "2 x 1" 행렬이 나오므로 X 행렬의 인덱스에 해당하는 값을 정리해 볼 수도 있습니다. 이 과정을 단계별로 천천히 ^^ 접근해 볼까요?





2 x 2 행렬의 역행렬은 다음과 같이 간략화할 수 있으므로,



ATA 결과의 역행렬을 구할 수 있습니다.



위의 결과를 2 x n 행렬의 AT와 연산을 하면 과정이 좀 복잡하니 어차피 행렬곱은 결합법칙이 성립하므로 뒤의 AT B 연산을 먼저 다음과 같이 정리할 수 있습니다.



마지막으로 (ATA)-1(2 x 2 행렬)에 AT * B(2 x 1 행렬)을 곱하는 것이므로 다음과 같이 최종 정리가 됩니다.



따라서 1차 방정식의 매개변수는 이렇게 단일 식으로 각각 구할 수 있습니다.






구하는 과정에 정리할 식이 좀 끼어들어서 그렇지, 사실 C# 코드로 위의 계산을 나타내면 별거 아닙니다. ^^

// 단순 for 루프를 이용한 계산
private static (double theta1, double theta0) GetEquation2(double[] xData, double[] yData)
{
    double sumAnBn = 0.0;
    double sumAn = 0.0;
    double sumBn = 0.0;
    double sumAnAn = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        sumAnBn += xData[i] * yData[i];
        sumAn += xData[i];
        sumBn += yData[i];
        sumAnAn += xData[i] * xData[i];
    }

    int n = xData.Length;
    double Q = sumAnAn * n - sumAn * sumAn;

    double theta1 = (n * sumAnBn - sumAn * sumBn) / Q;
    double theta0 = (-sumAn * sumAnBn + sumAnAn * sumBn) / Q;

    return (theta1, theta0);
}

// 행렬을 이용한 계산
private static (double theta1, double theta0) GetEquation(double[] xData, double[] yData)
{
    Matrix matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector add1 = Vector.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    Matrix matAwith1 = matA.InsertColumn(1, add1);

    Console.WriteLine(matAwith1);
    Matrix matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix pinvMatA = matAwith1.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix matX = pinvMatA * matB;

    return (matX[0, 0], matX[1, 0]);
}

당연하겠지만 행렬식을 이용했던 GetEquation 메서드와 비교해 보면,

{
    // y = theta0 + (theta1 * x)
    (double theta1, double theta0) = GetEquation(xData, yData);
    Console.WriteLine($"[method1] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method1] y = 231.545758451005 + 1.39551018043075 * x
    */
}

{
    (double theta1, double theta0) = GetEquation2(xData, yData);
    Console.WriteLine($"[method2] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method2] y = 231.545758451006 + 1.39551018043075 * x
    */
}

부동소수점 계산임을 감안해 값이 거의 동일하다는 것을 알 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 5/28/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2019-05-28 10시35분
선형 최소 제곱법(Linear Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5579
정성태

... 16  17  18  19  20  21  [22]  23  24  25  26  27  28  29  30  ...
NoWriterDateCnt.TitleFile(s)
13390정성태7/12/202311143스크립트: 53. 파이썬 - localhost 호출 시의 hang 현상
13389정성태7/5/202311488개발 환경 구성: 684. IIS Express로 호스팅하는 웹을 WSL 환경에서 접근하는 방법
13388정성태7/3/202311946오류 유형: 871. 윈도우 탐색기에서 열리지 않는 zip 파일 - The Compressed (zipped) Folder '[...].zip' is invalid. [1]파일 다운로드1
13387정성태6/28/202311154오류 유형: 870. _mysql - Commands out of sync; you can't run this command now
13386정성태6/27/202311893Linux: 61. docker - 원격 제어를 위한 TCP 바인딩 추가
13385정성태6/27/202311744Linux: 60. Linux - 외부에서의 접속을 허용하기 위한 TCP 포트 여는 방법
13384정성태6/26/202311208.NET Framework: 2131. C# - Source Generator로 해결하는 enum 박싱 문제파일 다운로드1
13383정성태6/26/202311008개발 환경 구성: 683. GPU 런타임을 사용하는 Colab 노트북 설정
13382정성태6/25/202310921.NET Framework: 2130. C# - Win32 API를 이용한 윈도우 계정 정보 (예: 마지막 로그온 시간)파일 다운로드1
13381정성태6/25/202311857오류 유형: 869. Fatal Python error: init_fs_encoding: failed to get the Python codec of the filesystem encoding
13380정성태6/24/202310329스크립트: 52. 파이썬 3.x에서의 동적 함수 추가
13379정성태6/23/202310784스크립트: 51. 파이썬 2.x에서의 동적 함수 추가
13378정성태6/22/202311033오류 유형: 868. docker - build 시 "CANCELED ..." 뜨는 문제
13377정성태6/22/202316008오류 유형: 867. 파이썬 mysqlclient 2.2.x 설치 시 "Specify MYSQLCLIENT_CFLAGS and MYSQLCLIENT_LDFLAGS env vars manually" 오류
13376정성태6/21/202311764.NET Framework: 2129. C# - Polly를 이용한 클라이언트 측의 요청 재시도파일 다운로드1
13375정성태6/20/202310757스크립트: 50. Transformers (신경망 언어모델 라이브러리) 강좌 - 2장 코드 실행 결과
13374정성태6/20/202310493오류 유형: 866. 파이썬 - <class 'AttributeError'> module 'flask.json' has no attribute 'JSONEncoder'
13373정성태6/19/202311879오류 유형: 865. 파이썬 - pymssql 설치 관련 오류 정리
13372정성태6/15/202310610개발 환경 구성: 682. SQL Server TLS 통신을 위해 사용되는 키 길이 확인 방법
13371정성태6/15/202311091개발 환경 구성: 681. openssl - 인증서 버전(V1 / V3)
13370정성태6/14/202311406개발 환경 구성: 680. C# - Ubuntu + Microsoft.Data.SqlClient + SQL Server 2008 R2 연결 방법 - TLS 1.2 지원
13369정성태6/13/202310637개발 환경 구성: 679. PyCharm(을 비롯해 JetBrains에 속한 여타) IDE에서 내부 Window들의 탭이 없어진 경우
13368정성태6/13/202311435개발 환경 구성: 678. openssl로 생성한 인증서를 SQL Server의 암호화 인증서로 설정하는 방법
13367정성태6/10/202312226오류 유형: 864. openssl로 만든 pfx 인증서를 Windows Server 2016 이하에서 등록 시 "The password you entered is incorrect" 오류 발생
13366정성태6/10/202311376.NET Framework: 2128. C# - 윈도우 시스템에서 지원하는 암호화 목록(Cipher Suites) 나열파일 다운로드1
13365정성태6/8/202310227오류 유형: 863. MODIFY FILE encountered operating system error 112(failed to retrieve text for this error. Reason: 15105)
... 16  17  18  19  20  21  [22]  23  24  25  26  27  28  29  30  ...