Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법

일단 행렬식을 이용하면,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

범용적으로 다항식에 대한 근사를 최소 자승법(최소 제곱법)으로 구할 수 있습니다. 하지만, 만약 대상을 "1차 함수"로 직선에 대한 근사만을 구한다면 복잡한 행렬 연산 없이 for 문만으로 매개 변수를 구하는 것이 가능합니다.

가령, 지난번 예제의 행렬식을 보겠습니다.

θ0 + θ1x1 = y1
θ0 + θ1x2 = y2
...
θ0 + θ1xn = yn



AX=B
A-1AX=A-1B
X=A-1B (A-1 == 의사역행렬)

결국 중요한 것은, 위의 식에서 A-1B 연산 결과를 구하는 것인데요, 헷갈리니까 일단 의사역행렬을 A+라고 정의하고, 이것을 행렬 라이브러리를 이용하면 단순히 Matrix 타입의 PseudoInverse를 호출하는 것으로 쉽게 해결했지만 만약 직접 구하고 싶다면 다음과 같은 과정을 거쳐야 합니다.

A+ = (ATA)-1AT

따라서, 매개변수를 나타내는 행렬 X는 B 행렬까지 곱해주면서 다음과 같이 계산할 수 있습니다.

X = A+ * B
  = (ATA)-1AT * B

이제 남은 작업은 위의 식을 간략하게 바꿔주면 됩니다. ^^




이 상태에서 A 행렬을 보면 "n x 2" 행렬이고 이것의 전치 행렬(AT)은 "2 x n" 행렬이 됩니다. 또한 B 행렬도 "n x 1" 행렬임을 감안하면 연산 결과가 다음과 같이 정리될 수 있습니다.

X = (ATA)-1AT * B
  = ((2 x n) * (n x 2))-1 * (2 x n) * (n x 1)
  = (2 x 2)-1 * (2 x 1)
  = (2 x 2) * (2 x 1)
  = (2 x 1)

즉, X 행렬은 (당연히 1차 함수의 매개변수 2개를 구하는 것이므로) 언제나 "2 x 1" 행렬이 나오므로 X 행렬의 인덱스에 해당하는 값을 정리해 볼 수도 있습니다. 이 과정을 단계별로 천천히 ^^ 접근해 볼까요?





2 x 2 행렬의 역행렬은 다음과 같이 간략화할 수 있으므로,



ATA 결과의 역행렬을 구할 수 있습니다.



위의 결과를 2 x n 행렬의 AT와 연산을 하면 과정이 좀 복잡하니 어차피 행렬곱은 결합법칙이 성립하므로 뒤의 AT B 연산을 먼저 다음과 같이 정리할 수 있습니다.



마지막으로 (ATA)-1(2 x 2 행렬)에 AT * B(2 x 1 행렬)을 곱하는 것이므로 다음과 같이 최종 정리가 됩니다.



따라서 1차 방정식의 매개변수는 이렇게 단일 식으로 각각 구할 수 있습니다.






구하는 과정에 정리할 식이 좀 끼어들어서 그렇지, 사실 C# 코드로 위의 계산을 나타내면 별거 아닙니다. ^^

// 단순 for 루프를 이용한 계산
private static (double theta1, double theta0) GetEquation2(double[] xData, double[] yData)
{
    double sumAnBn = 0.0;
    double sumAn = 0.0;
    double sumBn = 0.0;
    double sumAnAn = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        sumAnBn += xData[i] * yData[i];
        sumAn += xData[i];
        sumBn += yData[i];
        sumAnAn += xData[i] * xData[i];
    }

    int n = xData.Length;
    double Q = sumAnAn * n - sumAn * sumAn;

    double theta1 = (n * sumAnBn - sumAn * sumBn) / Q;
    double theta0 = (-sumAn * sumAnBn + sumAnAn * sumBn) / Q;

    return (theta1, theta0);
}

// 행렬을 이용한 계산
private static (double theta1, double theta0) GetEquation(double[] xData, double[] yData)
{
    Matrix matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector add1 = Vector.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    Matrix matAwith1 = matA.InsertColumn(1, add1);

    Console.WriteLine(matAwith1);
    Matrix matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix pinvMatA = matAwith1.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix matX = pinvMatA * matB;

    return (matX[0, 0], matX[1, 0]);
}

당연하겠지만 행렬식을 이용했던 GetEquation 메서드와 비교해 보면,

{
    // y = theta0 + (theta1 * x)
    (double theta1, double theta0) = GetEquation(xData, yData);
    Console.WriteLine($"[method1] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method1] y = 231.545758451005 + 1.39551018043075 * x
    */
}

{
    (double theta1, double theta0) = GetEquation2(xData, yData);
    Console.WriteLine($"[method2] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method2] y = 231.545758451006 + 1.39551018043075 * x
    */
}

부동소수점 계산임을 감안해 값이 거의 동일하다는 것을 알 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 5/28/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2019-05-28 10시35분
선형 최소 제곱법(Linear Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5579
정성태

... 91  92  93  94  95  96  97  [98]  99  100  101  102  103  104  105  ...
NoWriterDateCnt.TitleFile(s)
11485정성태4/11/201823692.NET Framework: 738. C# - Console 프로그램이 Ctrl+C 종료 시점을 감지하는 방법파일 다운로드1
11484정성태4/11/201824765.NET Framework: 737. C# - async를 Task 타입이 아닌 사용자 정의 타입에 적용하는 방법파일 다운로드1
11483정성태4/10/201828072개발 환경 구성: 358. "Let's Encrypt"에서 제공하는 무료 SSL 인증서를 IIS에 적용하는 방법 (2) [1]
11482정성태4/10/201820498VC++: 126. CUDA Core 수를 알아내는 방법
11481정성태4/10/201832203개발 환경 구성: 357. CUDA의 인덱싱 관련 용어 - blockIdx, threadIdx, blockDim, gridDim
11480정성태4/9/201822203.NET Framework: 736. C# - API를 사용해 Azure에 접근하는 방법 [2]파일 다운로드1
11479정성태4/9/201817827.NET Framework: 735. Azure - PowerShell로 Access control(IAM)에 새로운 계정 만드는 방법
11478정성태11/8/201920091디버깅 기술: 115. windbg - 덤프 파일로부터 PID와 환경변수 등의 정보를 구하는 방법 [1]
11477정성태4/8/201817523오류 유형: 460. windbg - sos 명령어 수행 시 c0000006 오류 발생
11476정성태4/8/201819092디버깅 기술: 114. windbg - !threads 출력 결과로부터 닷넷 관리 스레드(System.Threading.Thread) 객체를 구하는 방법
11475정성태3/28/201821401디버깅 기술: 113. windbg - Thread.Suspend 호출 시 응용 프로그램 hang 현상에 대한 덤프 분석
11474정성태3/27/201819533오류 유형: 459. xperf: error: TEST.Event: Invalid flags. (0x3ec).
11473정성태3/22/201824644.NET Framework: 734. C# - Thread.Suspend 호출 시 응용 프로그램 hang 현상파일 다운로드2
11472정성태3/22/201818627개발 환경 구성: 356. GTX 1070, GTX 960, GT 640M의 cudaGetDeviceProperties 출력 결과
11471정성태3/20/201822003VC++: 125. CUDA로 작성한 RGB2RGBA 성능 [1]파일 다운로드1
11470정성태3/20/201824190오류 유형: 458. Visual Studio - CUDA 프로젝트 빌드 시 오류 C1189, expression must have a constant value
11469정성태3/19/201817207오류 유형: 457. error MSB3103: Invalid Resx file. Could not load file or assembly 'System.Windows.Forms, ...' or one of its dependencies.
11468정성태3/19/201816704오류 유형: 456. 닷넷 응용 프로그램 실행 시 0x80131401 예외 발생
11467정성태3/19/201816107오류 유형: 455. Visual Studio Installer - 업데이트 실패
11466정성태3/18/201817242개발 환경 구성: 355. 한 대의 PC에서 2개 이상의 DirectX 게임을 실행하는 방법
11463정성태3/15/201819619.NET Framework: 733. 스레드 간의 read/write 시에도 lock이 필요 없는 경우파일 다운로드1
11462정성태3/14/201822538개발 환경 구성: 354. HTTPS 호출에 대한 TLS 설정 확인하는 방법 [1]
11461정성태3/13/201825096오류 유형: 454. 윈도우 업데이트 설치 오류 - 0x800705b4 [1]
11460정성태3/13/201817589디버깅 기술: 112. windbg - 닷넷 메모리 덤프에서 전역 객체의 내용을 조사하는 방법
11459정성태3/13/201818404오류 유형: 453. Debug Diagnostic Tool에서 mscordacwks.dll을 찾지 못하는 문제
11458정성태2/21/201819395오류 유형: 452. This share requires the obsolete SMB1 protocol, which is unsafe and could expose your system to attack. [1]
... 91  92  93  94  95  96  97  [98]  99  100  101  102  103  104  105  ...