Microsoft MVP성태의 닷넷 이야기
Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method) [링크 복사], [링크+제목 복사],
조회: 24458
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 다항식을 위한 최소 자승법(Least Squares Method)

지난 글에서,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

최소 자승법(최소 제곱법)을 이용해 1차 함수로 근사하는 것을 봤는데요, 이를 2차, 3차,...로 확장하는 것은 다음과 같이 매우 쉽습니다.

다항식(Polynomial): aXn 형식의 항들의 합으로 구성된 식
a: 계수(Coefficient)
X: 변수(Variable)
n: 지수(Exponent)

θ0 + θ1x1 + θ2x12 = y1
θ0 + θ1x2 + θ2x22 = y2
...
θ0 + θ1xn + θ2xn2 = yn



θ0 + θ1x1 + θ2x12 + θ3x13 = y1
θ0 + θ1x2 + θ2x22 + θ3x13 = y2
...
θ0 + θ1xn + θ2xn2 + θ3x13 = yn



따라서 행렬을 사용하는 경우 그냥 늘어나는 방정식의 계수만큼 행을 추가해 의사역행렬을 구한 후 연산하면 매개변수를 구할 수 있습니다.

private static double[] GetPolynomial(double[] xData, double[] yData, int numberOfEfficient)
{
    Matrix<double> matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector<double> add1 = Vector<double>.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    matA = matA.InsertColumn(1, add1);

    for (int i = 1; i < numberOfEfficient; i++)
    {
        double[] newColumnData = xData.Select((elem) => Math.Pow(elem, i + 1)).ToArray();
        Vector<double> addX = Vector<double>.Build.DenseOfArray(newColumnData);
        matA = matA.InsertColumn(0, addX);
    }

    Console.WriteLine(matA);
    Matrix<double> matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix<double> pinvMatA = matA.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix<double> matX = pinvMatA * matB;
    return matX.AsColumnMajorArray();
}

[파란색 - 1차 함수, 빨간색 - 2차 함수, 노란색 3차 함수]
lsm_polynomial_1.png

일반적으로 차수가 올라갈수록 (과적합의 문제가 발생할 수 있지만) 오류는 더 적어집니다. 확인을 위해 간단하게 다음과 같이 작성해 보면,

private static void ReportError(double[] xData, double[] yData, Func<double, double> func)
{
    double error = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        double diff = yData[i] - func(xData[i]);
        error += (diff * diff);
    }

    Console.WriteLine("Error: " + error);
}
/*
1차: Error: 19086.9489618992
2차: Error: 6555.72459287144
3차: Error: 5038.32058563331
*/

1차에 비해 2차에서 두드러지게 오류가 낮아지는 것을 볼 수 있습니다. 따라서 이런 경우 효율을 고려한다면 2차 함수를 사용하는 것이 좋은 선택일 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




지난 글에서 행렬 라이브러리를 직접 사용하지 않고 1차 근사식에 대한 매개 변수를 구하는 방법을 알아봤는데요,

C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

말 그대로 연립 방정식이므로 가우스 소거법을 이용해 매개 변수를 구하는 것도 가능합니다. 코드가 눈에 잘 안 들어오지만 어차피 복붙으로 써야 하는 것이라 큰 문제는 안 될 것입니다. ^^

Linear Equation Solver - Gaussian Elimination (C#)
; https://www.codeproject.com/Tips/388179/Linear-Equation-Solver-Gaussian-Elimination-Csharp

Gaussian elimination
; https://rosettacode.org/wiki/Gaussian_elimination#C.23

Solve a system of equations with Gaussian elimination in C#
; http://csharphelper.com/blog/2014/10/solve-a-system-of-equations-with-gaussian-elimination-in-c/

[C#/WINFORM] 다항식 최소 제곱법(Polynomial Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5580




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/2/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 121  122  123  [124]  125  126  127  128  129  130  131  132  133  134  135  ...
NoWriterDateCnt.TitleFile(s)
10823정성태7/7/201527953오류 유형: 300. SqlException (0x80131904): Unable to open the physical file
10822정성태7/7/201527322오류 유형: 299. The 'Visual C++ Project System Package' package did not load correctly.
10821정성태7/7/201519557오류 유형: 298. Unable to start debugging on the web server. IIS does not list a web site that matches the launched URL.
10820정성태7/7/201525545오류 유형: 297. HTTP Error 503. The service is unavailable. - 두 번째
10819정성태7/2/201528962오류 유형: 296. SQL Server Express 시작 오류 - error code 3417
10818정성태7/1/201527802오류 유형: 295. HTTP Error 503. The service is unavailable. [1]
10817정성태6/29/201531516.NET Framework: 523. C# 람다(Lambda)에서 변수 캡처 방식 [3]
10816정성태6/25/201527821.NET Framework: 522. 닷넷의 어셈블리 서명 데이터 확인 방법파일 다운로드1
10815정성태6/23/201525683Graphics: 1. 자네 나와 함께... UNITY 하지 않겠는가! [4]
10814정성태6/22/201523502.NET Framework: 521. Roslyn을 이용해 C# 문법 변형하기 (2) [5]
10813정성태6/21/201525288.NET Framework: 520. Roslyn을 이용해 C# 문법 변형하기 (1)
10812정성태6/20/201526399.NET Framework: 519. C# 6.0 오픈 소스 컴파일러 Roslyn - 빌드 및 테스트 방법 [1]
10811정성태6/20/201523183오류 유형: 294. OpenAuth 사용 시 System.Data.SqlClient.SqlException 예외가 Output 창에 출력되는 문제
10810정성태6/18/201522186개발 환경 구성: 270. Visual Studio에서 github 오픈 소스를 fork해서 테스트하는 방법 [1]
10809정성태6/18/201520165.NET Framework: 518. AllowPartiallyTrustedCallers 특성이 적용된 GAC 어셈블리에서 DynamicMethod의 calli 명령어 사용파일 다운로드1
10808정성태6/17/201522501.NET Framework: 517. calli IL 호출이 DllImport 호출보다 빠를까요? [1]파일 다운로드1
10807정성태6/16/201523584.NET Framework: 516. Microsoft.AspNet.Membership.OpenAuth 사용 시 "Local Database Runtime error occurred" 오류
10806정성태6/16/201541427.NET Framework: 515. OpenAuth.VerifyAuthentication 호출 시 The remote server returned an error: (400) Bad Request
10805정성태6/15/201522761Java: 17. 자바의 재미있는 상수 처리 방식
10804정성태6/10/201522476.NET Framework: 514. .NET CLR2 보안 모델에서의 APTCA 역할 (2)파일 다운로드1
10803정성태6/2/201524413.NET Framework: 513. UWP(Universal Windows Platform) 응용 프로그램의 새로운 라이브러리 버전 관리 해법 [2]
10802정성태6/2/201524447개발 환경 구성: 269. 마이크로소프트 온라인 강좌 소개 - Azure VPN 구성 방법 [1]
10801정성태5/31/201528977.NET Framework: 512. async/await 사용 시 hang 문제가 발생하는 경우 - 두 번째 이야기 [3]
10800정성태5/29/201524455개발 환경 구성: 268. 소개 - 프로세싱(https://processing.org/)
10799정성태5/29/201522180사물인터넷: 3. 책 소개 - 라즈베리 파이로 구현하는 사물 인터넷 프로젝트 [1]
10798정성태5/26/201522064기타: 53. 2015년 6월 10일 밤 10시 온라인 세미나 - 새로운 Windows 10 App을 개발하는 방법
... 121  122  123  [124]  125  126  127  128  129  130  131  132  133  134  135  ...