Microsoft MVP성태의 닷넷 이야기
Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method) [링크 복사], [링크+제목 복사],
조회: 24474
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 다항식을 위한 최소 자승법(Least Squares Method)

지난 글에서,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

최소 자승법(최소 제곱법)을 이용해 1차 함수로 근사하는 것을 봤는데요, 이를 2차, 3차,...로 확장하는 것은 다음과 같이 매우 쉽습니다.

다항식(Polynomial): aXn 형식의 항들의 합으로 구성된 식
a: 계수(Coefficient)
X: 변수(Variable)
n: 지수(Exponent)

θ0 + θ1x1 + θ2x12 = y1
θ0 + θ1x2 + θ2x22 = y2
...
θ0 + θ1xn + θ2xn2 = yn



θ0 + θ1x1 + θ2x12 + θ3x13 = y1
θ0 + θ1x2 + θ2x22 + θ3x13 = y2
...
θ0 + θ1xn + θ2xn2 + θ3x13 = yn



따라서 행렬을 사용하는 경우 그냥 늘어나는 방정식의 계수만큼 행을 추가해 의사역행렬을 구한 후 연산하면 매개변수를 구할 수 있습니다.

private static double[] GetPolynomial(double[] xData, double[] yData, int numberOfEfficient)
{
    Matrix<double> matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector<double> add1 = Vector<double>.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    matA = matA.InsertColumn(1, add1);

    for (int i = 1; i < numberOfEfficient; i++)
    {
        double[] newColumnData = xData.Select((elem) => Math.Pow(elem, i + 1)).ToArray();
        Vector<double> addX = Vector<double>.Build.DenseOfArray(newColumnData);
        matA = matA.InsertColumn(0, addX);
    }

    Console.WriteLine(matA);
    Matrix<double> matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix<double> pinvMatA = matA.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix<double> matX = pinvMatA * matB;
    return matX.AsColumnMajorArray();
}

[파란색 - 1차 함수, 빨간색 - 2차 함수, 노란색 3차 함수]
lsm_polynomial_1.png

일반적으로 차수가 올라갈수록 (과적합의 문제가 발생할 수 있지만) 오류는 더 적어집니다. 확인을 위해 간단하게 다음과 같이 작성해 보면,

private static void ReportError(double[] xData, double[] yData, Func<double, double> func)
{
    double error = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        double diff = yData[i] - func(xData[i]);
        error += (diff * diff);
    }

    Console.WriteLine("Error: " + error);
}
/*
1차: Error: 19086.9489618992
2차: Error: 6555.72459287144
3차: Error: 5038.32058563331
*/

1차에 비해 2차에서 두드러지게 오류가 낮아지는 것을 볼 수 있습니다. 따라서 이런 경우 효율을 고려한다면 2차 함수를 사용하는 것이 좋은 선택일 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




지난 글에서 행렬 라이브러리를 직접 사용하지 않고 1차 근사식에 대한 매개 변수를 구하는 방법을 알아봤는데요,

C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

말 그대로 연립 방정식이므로 가우스 소거법을 이용해 매개 변수를 구하는 것도 가능합니다. 코드가 눈에 잘 안 들어오지만 어차피 복붙으로 써야 하는 것이라 큰 문제는 안 될 것입니다. ^^

Linear Equation Solver - Gaussian Elimination (C#)
; https://www.codeproject.com/Tips/388179/Linear-Equation-Solver-Gaussian-Elimination-Csharp

Gaussian elimination
; https://rosettacode.org/wiki/Gaussian_elimination#C.23

Solve a system of equations with Gaussian elimination in C#
; http://csharphelper.com/blog/2014/10/solve-a-system-of-equations-with-gaussian-elimination-in-c/

[C#/WINFORM] 다항식 최소 제곱법(Polynomial Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5580




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/2/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 31  [32]  33  34  35  36  37  38  39  40  41  42  43  44  45  ...
NoWriterDateCnt.TitleFile(s)
13143정성태10/19/202215850오류 유형: 821. windbg/sos - Error code - 0x000021BE
13142정성태10/18/202220599도서: 시작하세요! C# 12 프로그래밍
13141정성태10/17/202216286.NET Framework: 2058. [in,out] 배열을 C#에서 C/C++로 넘기는 방법 - 세 번째 이야기파일 다운로드1
13140정성태10/11/202215789C/C++: 159. C/C++ - 리눅스 환경에서 u16string 문자열을 출력하는 방법 [2]
13139정성태10/9/202213812.NET Framework: 2057. 리눅스 환경의 .NET Core 3/5+ 메모리 덤프로부터 모든 닷넷 모듈을 추출하는 방법파일 다운로드1
13138정성태10/8/202216423.NET Framework: 2056. C# - await 비동기 호출을 기대한 메서드가 동기로 호출되었을 때의 부작용 [1]
13137정성태10/8/202214429.NET Framework: 2055. 리눅스 환경의 .NET Core 3/5+ 메모리 덤프로부터 닷넷 모듈을 추출하는 방법
13136정성태10/7/202214728.NET Framework: 2054. .NET Core/5+ SDK 설치 없이 dotnet-dump 사용하는 방법
13135정성태10/5/202215220.NET Framework: 2053. 리눅스 환경의 .NET Core 3/5+ 메모리 덤프를 분석하는 방법 - 두 번째 이야기 [1]
13134정성태10/4/202212417오류 유형: 820. There is a problem with AMD Radeon RX 5600 XT device. For more information, search for 'graphics device driver error code 31'
13133정성태10/4/202213556Windows: 211. Windows - (commit이 아닌) reserved 메모리 사용량 확인 방법 [1]
13132정성태10/3/202213555스크립트: 42. 파이썬 - latexify-py 패키지 소개 - 함수를 mathjax 식으로 표현
13131정성태10/3/202217326.NET Framework: 2052. C# - Windows Forms의 데이터 바인딩 지원(DataBinding, DataSource) [2]파일 다운로드1
13130정성태9/28/202213185.NET Framework: 2051. .NET Core/5+ - 에러 로깅을 위한 Middleware가 동작하지 않는 경우파일 다운로드1
13129정성태9/27/202213906.NET Framework: 2050. .NET Core를 IIS에서 호스팅하는 경우 .NET Framework CLR이 함께 로드되는 환경
13128정성태9/23/202216813C/C++: 158. Visual C++ - IDL 구문 중 "unsigned long"을 인식하지 못하는 #import [1]파일 다운로드1
13127정성태9/22/202215058Windows: 210. WSL에 systemd 도입
13126정성태9/15/202215554.NET Framework: 2049. C# 11 - 정적 메서드에 대한 delegate 처리 시 cache 적용
13125정성태9/14/202215886.NET Framework: 2048. C# 11 - 구조체 필드의 자동 초기화(auto-default structs)
13124정성태9/13/202215719.NET Framework: 2047. Golang, Python, C#에서의 CRC32 사용
13123정성태9/8/202215810.NET Framework: 2046. C# 11 - 멤버(속성/필드)에 지정할 수 있는 required 예약어 추가
13122정성태8/26/202216250.NET Framework: 2045. C# 11 - 메서드 매개 변수에 대한 nameof 지원
13121정성태8/23/202212578C/C++: 157. Golang - 구조체의 slice 필드를 Reflection을 이용해 변경하는 방법
13120정성태8/19/202216233Windows: 209. Windows NT Service에서 UI를 다루는 방법 [3]
13119정성태8/18/202215282.NET Framework: 2044. .NET Core/5+ 프로젝트에서 참조 DLL이 보관된 공통 디렉터리를 지정하는 방법
13118정성태8/18/202212785.NET Framework: 2043. WPF Color의 기본 색 영역은 (sRGB가 아닌) scRGB [2]
... 31  [32]  33  34  35  36  37  38  39  40  41  42  43  44  45  ...