Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최대 값 구하기

예전에 미분을 이용한,

그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

방정식의 근사해를 알아본 적이 있는데요. 도함수의 다음과 같은 특성을 이용하면,

f' < 0: 최솟값은 우측에.
f' = 0: 최솟값
f' > 0: 최솟값은 좌측에.

최솟값을 (그 반대로는 최댓값을) 근사할 수 있습니다. 예를 들어, f(x) = x^2 - 2x + 1이라는 방정식이 있다면,

gradient_descent_1.png

이것의 도함수는 f'(x) = 2x - 2가 되고, (무작위로 선정한) x = 10으로 시작하는 경우 최솟값을 다음과 같이 이동하면서 근사할 수 있습니다.

f'(10) = 18 > 0: 최솟값은 좌측에 있으므로 다음번 x는 좀 더 작게 시도.
f'( 9) = 16 > 0:  "
f'( 8) = 14 > 0:  "
...            :  "
f'( 1) =  0 = 0:  최솟값

물론 위의 경우에는 1씩 줄여나가다 운이 좋아 정확히 최솟값 위치에 왔지만 단순하지 않은 상황에서는 근삿값에 대한 범위를 마련하고 그것을 만족하는 수준이거나, 아니면 근삿값으로 진행하는 과정 중에 원하는 수준만큼의 변화가 없다면 중단하는 식으로 작성하면 됩니다.

코드로 만들어 보면,

using MathNet.Numerics.Random;
using PLplot;
using System;
using System.Linq;

namespace ConsoleApp2
{
    class Program
    {
        static void Main(string[] args)
        {
            Func<double, double> f = (x) => (x - 1) * (x - 1);
            Func<double, double> df = (x) => 2 * x - 2;

            // 그래프 출력
            DrawPlotChart(-14, 14, -10, 120, f, df);
        }

        private static void DrawPlotChart(double xMin, double xMax, double yMin, double yMax, 
            Func<double, double> orgDrawFunc, Func<double, double> dfDrawFunc)
        {
            string chartFileName = "click.svg";

            using (var pl = new PLStream())
            {
                pl.sdev("svg");
                pl.sfnam(chartFileName);
                pl.spal0("cmap0_alternate.pal");
                pl.init();

                pl.env(xMin, xMax, yMin, yMax, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes);
                pl.lab("X", "Y", "y = x^2 - 2x + 1");

                pl.spal0("");
                pl.col0(PLplot.Color.Blue);

                // y = x ^ 2 - 2x + 1 그래프를 그리고,
                {
                    double[] ptX = Utils.RangeInclusive(xMin, xMax, 0.01).ToArray();
                    double[] ptY = null;

                    ptY = new double[ptX.Length];
                    for (int i = 0; i < ptX.Length; i++)
                    {
                        ptY[i] = orgDrawFunc(ptX[i]);
                    }

                    pl.line(ptX, ptY);
                }

                char code = Symbol.Bullet;
                pl.col0(PLplot.Color.Blue);

                // x = 15에서 시작해 도함수의 결과에 따라 0.1씩 변위를 주며 최솟값으로 이동하는 과정을 점으로 출력
                int maxTrial = 1000;
                double anyX = 15.0; // 랜덤 값

                while (maxTrial-- > 0)
                {
                    double yPos = dfDrawFunc(anyX);
                    pl.Point(anyX, orgDrawFunc(anyX), code);

                    if (yPos.GetCloseToZeroSlope())
                    {
                        break;
                    }
                    else anyX += (yPos > 0) ? -0.1 : 0.1;
                }

                pl.eop();
                pl.gver(out var verText);
            }
        }
    }

    public static class Utils
    {
        public static IEnumerable<T> RangeInclusive<T>(T start, T stop, T step)
        {
            dynamic dStart = start;
            dynamic dStop = stop;
            dynamic dStep = step;

            if (dStep == 0)
                throw new ArgumentException("Parameter step cannot equal zero.");

            if (dStart < dStop && dStep > 0)
            {
                for (var i = dStart; i <= dStop; i += dStep)
                {
                    yield return i;
                }
            }
            else if (dStart > dStop && dStep < 0)
            {
                for (var i = dStart; i >= dStop; i += dStep)
                {
                    yield return i;
                }
            }
        }

        public static void Point(this PLStream pl, double x, double y, char code)
        {
            pl.poin(new double[] { x }, new double[] { y }, code);
        }

        public static bool GetCloseToZeroSlope(this double value)
        {
            return Math.Abs(value) < 1e-03 ? true : false;
        }
    }
}

다음과 같은 출력을 얻을 수 있습니다.

gradient_descent_2.png

보는 바와 같이 최솟값으로 잘 수렴하고 있죠! ^^




"그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#" 글을 보면, 도함수로 접근하면서 처음에는 크게 이동하다가 점차 간격이 작아지게 되는데 마찬가지로 경사 하강법도 단순하게 x의 값을 일정 수로 줄여나가기 보다 다음과 같은 식으로 이전 x 값 기준으로 줄여나가는 방식이 있습니다.

x := x - f'(x)

하지만, 단순히 위와 같이 하면 f'(x)의 반환값이 크기 때문에 x 값의 부호를 반대로 만들어 근삿값을 진동하는 식으로 접근하게 됩니다. 이런 문제를 해결하기 위해 약간의 조정값을 f'(x)에 곱해주면,

x := x - n * f'(x) // n == 학습 비율(learning rate)
                   // 예를 들어 n = 0.1

즉, 이전 코드를 다음과 같이 개선한 후,

anyX = 15.0;
double t = 0.1;

while (maxTrial-- > 0)
{
    double yPos = dfDrawFunc(anyX);
    pl.Point(anyX, orgDrawFunc(anyX), code);

    if (yPos.GetCloseToZeroSlope())
    {
        break;
    }
    else anyX -= (t * yPos);
}

결과를 보면, 훨씬 빨리 최솟값으로 수렴하는 것을 확인할 수 있습니다.

gradient_descent_3.png

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




수렴을 좀 더 빨리하기 위해, 데이터에 대한 전처리를 수행하는 과정이 바로 정규화입니다. 예를 들어 이전 글을 보면,

ML.NET 데이터 정규화
; https://www.sysnet.pe.kr/2/0/11922

click.csv 파일의 x 값 범위가 25 ~ 272에 해당하는데 이것을 z-score 정규화를 거치면 -1.7406785589738 ~ 1.94669368859505가 되어 수렴을 시작할 수 있는 랜덤 값 범위를 대폭 줄이게 됩니다.

참고로, 직관적으로 아시겠지만 ^^ 경사 하강법은,

경사 하강법
; https://ko.wikipedia.org/wiki/%EA%B2%BD%EC%82%AC_%ED%95%98%EA%B0%95%EB%B2%95

지역 근사해는 찾아도, 전역 근사해를 찾지 못할 수 있습니다. 아래의 그래프와 같은 상황들을 보면 이해가 되실 것입니다. ^^

gradient_descent_4.png

gradient_descent_5.png

이에 대한 보완으로 "확률 경사 하강법"과 "미니 배치법"이 있다고 하니 좀 더 자세한 사항은 "기초 수학으로 이해하는 머신러닝 알고리즘" 책을 보시면 되겠습니다. ^^




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 5/31/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 91  92  93  94  95  96  97  98  99  100  101  102  [103]  104  105  ...
NoWriterDateCnt.TitleFile(s)
11392정성태12/7/201718950개발 환경 구성: 341. openSUSE에 닷넷 코어 설치
11391정성태12/7/201721967개발 환경 구성: 340. WSL을 이용해 윈도우 PC 1대에서 openSUSE 응용 프로그램을 Visual Studio로 개발하는 방법 [1]
11390정성태12/7/201730866개발 환경 구성: 339. WSL을 이용해 윈도우 PC 1대에서 Linux 응용 프로그램을 Visual Studio로 개발하는 방법 [6]
11389정성태12/7/201719521오류 유형: 440. .NET Core 오류 - 0x80131620 Unable to load DLL 'libuv'
11388정성태12/6/201723332개발 환경 구성: 338. WSL 또는 Ubuntu에 닷넷 코어 설치 [3]
11387정성태12/6/201723287오류 유형: 439. 이벤트 로그 - Data Sharing Service 서비스의 %%3239247874 오류 메시지
11386정성태12/5/201719259오류 유형: 438. Hyper-V - '...' failed to add device 'Virtual CD/DVD Disk'
11385정성태12/5/201732398VC++: 121. DXGI를 이용한 윈도우 화면 캡처 소스 코드(Visual C++) [16]파일 다운로드1
11384정성태12/5/201721821오류 유형: 437. Visual C++ - Cannot open include file: 'SDKDDKVer.h'
11383정성태12/4/201724526디버깅 기술: 110. 비동기 코드 실행 중 예외로 인한 ASP.NET 프로세스 비정상 종료 현상 [1]
11382정성태12/4/201723206오류 유형: 436. System.Data.SqlClient.SqlException (0x80131904): Connection Timeout Expired 예외 발생 시 "[Pre-Login] initialization=48; handshake=1944;" 값의 의미
11381정성태11/30/201719812.NET Framework: 702. 한글이 포함된 바이트 배열을 나눈 경우 한글이 깨지지 않도록 다시 조합하는 방법(두 번째 이야기)파일 다운로드1
11380정성태11/30/201719862디버깅 기술: 109. windbg - (x64에서의 인자 값 추적을 이용한) Thread.Abort 시 대상이 되는 스레드를 식별하는 방법
11379정성태11/30/201719827오류 유형: 435. System.Web.HttpException - Session state has created a session id, but cannot save it because the response was already flushed by the application.
11378정성태11/29/201721693.NET Framework: 701. 한글이 포함된 바이트 배열을 나눈 경우 한글이 깨지지 않도록 다시 조합하는 방법 [1]파일 다운로드1
11377정성태11/29/201721229.NET Framework: 700. CommonOpenFileDialog 사용 시 사용자가 선택한 파일 목록을 구하는 방법 [3]파일 다운로드1
11376정성태11/28/201725824VS.NET IDE: 123. Visual Studio 편집기의 \r\n (crlf) 개행을 \n으로 폴더 단위로 설정하는 방법
11375정성태11/28/201719784오류 유형: 434. Visual Studio로 ASP.NET 디버깅 중 System.Web.HttpException - Could not load type 오류
11374정성태11/27/201725622사물인터넷: 14. 라즈베리 파이 - (윈도우의 NT 서비스처럼) 부팅 시 시작하는 프로그램 설정 [1]
11373정성태11/27/201724677오류 유형: 433. Raspberry Pi/Windows 다중 플랫폼 지원 컴파일 관련 오류 기록
11372정성태11/25/201727288사물인터넷: 13. 윈도우즈 사용자를 위한 라즈베리 파이 제로 W 모델을 설정하는 방법 [4]
11371정성태11/25/201721108오류 유형: 432. Hyper-V 가상 스위치 생성 시 Failed to connect Ethernet switch port 0x80070002 오류 발생
11370정성태11/25/201721266오류 유형: 431. Hyper-V의 Virtual Switch 생성 시 "External network" 목록에 특정 네트워크 어댑터 항목이 없는 경우
11369정성태11/25/201723023사물인터넷: 12. Raspberry Pi Zero(OTG)를 다른 컴퓨터에 연결해 가상 키보드 및 마우스로 쓰는 방법 (절대 좌표, 상대 좌표, 휠) [1]
11368정성태11/25/201728464.NET Framework: 699. UDP 브로드캐스트 주소 255.255.255.255와 192.168.0.255의 차이점과 이를 고려한 C# UDP 서버/클라이언트 예제 [2]파일 다운로드1
11367정성태11/25/201728945개발 환경 구성: 337. 윈도우 운영체제의 route 명령어 사용법
... 91  92  93  94  95  96  97  98  99  100  101  102  [103]  104  105  ...