Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최대 값 구하기

예전에 미분을 이용한,

그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

방정식의 근사해를 알아본 적이 있는데요. 도함수의 다음과 같은 특성을 이용하면,

f' < 0: 최솟값은 우측에.
f' = 0: 최솟값
f' > 0: 최솟값은 좌측에.

최솟값을 (그 반대로는 최댓값을) 근사할 수 있습니다. 예를 들어, f(x) = x^2 - 2x + 1이라는 방정식이 있다면,

gradient_descent_1.png

이것의 도함수는 f'(x) = 2x - 2가 되고, (무작위로 선정한) x = 10으로 시작하는 경우 최솟값을 다음과 같이 이동하면서 근사할 수 있습니다.

f'(10) = 18 > 0: 최솟값은 좌측에 있으므로 다음번 x는 좀 더 작게 시도.
f'( 9) = 16 > 0:  "
f'( 8) = 14 > 0:  "
...            :  "
f'( 1) =  0 = 0:  최솟값

물론 위의 경우에는 1씩 줄여나가다 운이 좋아 정확히 최솟값 위치에 왔지만 단순하지 않은 상황에서는 근삿값에 대한 범위를 마련하고 그것을 만족하는 수준이거나, 아니면 근삿값으로 진행하는 과정 중에 원하는 수준만큼의 변화가 없다면 중단하는 식으로 작성하면 됩니다.

코드로 만들어 보면,

using MathNet.Numerics.Random;
using PLplot;
using System;
using System.Linq;

namespace ConsoleApp2
{
    class Program
    {
        static void Main(string[] args)
        {
            Func<double, double> f = (x) => (x - 1) * (x - 1);
            Func<double, double> df = (x) => 2 * x - 2;

            // 그래프 출력
            DrawPlotChart(-14, 14, -10, 120, f, df);
        }

        private static void DrawPlotChart(double xMin, double xMax, double yMin, double yMax, 
            Func<double, double> orgDrawFunc, Func<double, double> dfDrawFunc)
        {
            string chartFileName = "click.svg";

            using (var pl = new PLStream())
            {
                pl.sdev("svg");
                pl.sfnam(chartFileName);
                pl.spal0("cmap0_alternate.pal");
                pl.init();

                pl.env(xMin, xMax, yMin, yMax, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes);
                pl.lab("X", "Y", "y = x^2 - 2x + 1");

                pl.spal0("");
                pl.col0(PLplot.Color.Blue);

                // y = x ^ 2 - 2x + 1 그래프를 그리고,
                {
                    double[] ptX = Utils.RangeInclusive(xMin, xMax, 0.01).ToArray();
                    double[] ptY = null;

                    ptY = new double[ptX.Length];
                    for (int i = 0; i < ptX.Length; i++)
                    {
                        ptY[i] = orgDrawFunc(ptX[i]);
                    }

                    pl.line(ptX, ptY);
                }

                char code = Symbol.Bullet;
                pl.col0(PLplot.Color.Blue);

                // x = 15에서 시작해 도함수의 결과에 따라 0.1씩 변위를 주며 최솟값으로 이동하는 과정을 점으로 출력
                int maxTrial = 1000;
                double anyX = 15.0; // 랜덤 값

                while (maxTrial-- > 0)
                {
                    double yPos = dfDrawFunc(anyX);
                    pl.Point(anyX, orgDrawFunc(anyX), code);

                    if (yPos.GetCloseToZeroSlope())
                    {
                        break;
                    }
                    else anyX += (yPos > 0) ? -0.1 : 0.1;
                }

                pl.eop();
                pl.gver(out var verText);
            }
        }
    }

    public static class Utils
    {
        public static IEnumerable<T> RangeInclusive<T>(T start, T stop, T step)
        {
            dynamic dStart = start;
            dynamic dStop = stop;
            dynamic dStep = step;

            if (dStep == 0)
                throw new ArgumentException("Parameter step cannot equal zero.");

            if (dStart < dStop && dStep > 0)
            {
                for (var i = dStart; i <= dStop; i += dStep)
                {
                    yield return i;
                }
            }
            else if (dStart > dStop && dStep < 0)
            {
                for (var i = dStart; i >= dStop; i += dStep)
                {
                    yield return i;
                }
            }
        }

        public static void Point(this PLStream pl, double x, double y, char code)
        {
            pl.poin(new double[] { x }, new double[] { y }, code);
        }

        public static bool GetCloseToZeroSlope(this double value)
        {
            return Math.Abs(value) < 1e-03 ? true : false;
        }
    }
}

다음과 같은 출력을 얻을 수 있습니다.

gradient_descent_2.png

보는 바와 같이 최솟값으로 잘 수렴하고 있죠! ^^




"그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#" 글을 보면, 도함수로 접근하면서 처음에는 크게 이동하다가 점차 간격이 작아지게 되는데 마찬가지로 경사 하강법도 단순하게 x의 값을 일정 수로 줄여나가기 보다 다음과 같은 식으로 이전 x 값 기준으로 줄여나가는 방식이 있습니다.

x := x - f'(x)

하지만, 단순히 위와 같이 하면 f'(x)의 반환값이 크기 때문에 x 값의 부호를 반대로 만들어 근삿값을 진동하는 식으로 접근하게 됩니다. 이런 문제를 해결하기 위해 약간의 조정값을 f'(x)에 곱해주면,

x := x - n * f'(x) // n == 학습 비율(learning rate)
                   // 예를 들어 n = 0.1

즉, 이전 코드를 다음과 같이 개선한 후,

anyX = 15.0;
double t = 0.1;

while (maxTrial-- > 0)
{
    double yPos = dfDrawFunc(anyX);
    pl.Point(anyX, orgDrawFunc(anyX), code);

    if (yPos.GetCloseToZeroSlope())
    {
        break;
    }
    else anyX -= (t * yPos);
}

결과를 보면, 훨씬 빨리 최솟값으로 수렴하는 것을 확인할 수 있습니다.

gradient_descent_3.png

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




수렴을 좀 더 빨리하기 위해, 데이터에 대한 전처리를 수행하는 과정이 바로 정규화입니다. 예를 들어 이전 글을 보면,

ML.NET 데이터 정규화
; https://www.sysnet.pe.kr/2/0/11922

click.csv 파일의 x 값 범위가 25 ~ 272에 해당하는데 이것을 z-score 정규화를 거치면 -1.7406785589738 ~ 1.94669368859505가 되어 수렴을 시작할 수 있는 랜덤 값 범위를 대폭 줄이게 됩니다.

참고로, 직관적으로 아시겠지만 ^^ 경사 하강법은,

경사 하강법
; https://ko.wikipedia.org/wiki/%EA%B2%BD%EC%82%AC_%ED%95%98%EA%B0%95%EB%B2%95

지역 근사해는 찾아도, 전역 근사해를 찾지 못할 수 있습니다. 아래의 그래프와 같은 상황들을 보면 이해가 되실 것입니다. ^^

gradient_descent_4.png

gradient_descent_5.png

이에 대한 보완으로 "확률 경사 하강법"과 "미니 배치법"이 있다고 하니 좀 더 자세한 사항은 "기초 수학으로 이해하는 머신러닝 알고리즘" 책을 보시면 되겠습니다. ^^




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 5/31/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 76  77  78  79  80  81  82  [83]  84  85  86  87  88  89  90  ...
NoWriterDateCnt.TitleFile(s)
11862정성태4/7/201920287개발 환경 구성: 437. .NET EXE의 ASLR 기능을 끄는 방법
11861정성태4/6/201919635디버깅 기술: 126. windbg - .NET x86 CLR2/CLR4 EXE의 EntryPoint
11860정성태4/5/201923572오류 유형: 527. Visual C++ 컴파일 오류 - error C2220: warning treated as error - no 'object' file generated
11859정성태4/4/201920857디버깅 기술: 125. WinDbg로 EXE의 EntryPoint에서 BP 거는 방법
11858정성태3/27/201921705VC++: 129. EXE를 LoadLibrary로 로딩해 PE 헤더에 있는 EntryPoint를 직접 호출하는 방법파일 다운로드1
11857정성태3/26/201919575VC++: 128. strncpy 사용 시 주의 사항(Linux / Windows)
11856정성태3/25/201919798VS.NET IDE: 134. 마이크로소프트의 CoreCLR 프로파일러 리눅스 예제를 Visual Studio F5 원격 디버깅하는 방법 [1]파일 다운로드1
11855정성태3/25/201921984개발 환경 구성: 436. 페이스북 HTTPS 인증을 localhost에서 테스트하는 방법
11854정성태3/25/201917710VS.NET IDE: 133. IIS Express로 호스팅하는 사이트를 https로 접근하는 방법
11853정성태3/24/201920458개발 환경 구성: 435. 존재하지 않는 IP 주소에 대한 Dns.GetHostByAddress/gethostbyaddr/GetNameInfoW 실행이 느리다면? - 두 번째 이야기 [1]
11852정성태3/20/201919641개발 환경 구성: 434. 존재하지 않는 IP 주소에 대한 Dns.GetHostByAddress/gethostbyaddr/GetNameInfoW 실행이 느리다면?파일 다운로드1
11851정성태3/19/201923394Linux: 8. C# - 리눅스 환경에서 DllImport 대신 라이브러리 동적 로드 처리 [2]
11850정성태3/18/201922497.NET Framework: 813. C# async 메서드에서 out/ref/in 유형의 인자를 사용하지 못하는 이유
11849정성태3/18/201921806.NET Framework: 812. pscp.exe 기능을 C#으로 제어하는 방법파일 다운로드1
11848정성태3/17/201918587스크립트: 14. 윈도우 CMD - 파일이 변경된 경우 파일명을 변경해 복사하고 싶다면?
11847정성태3/17/201923034Linux: 7. 리눅스 C/C++ - 공유 라이브러리 동적 로딩 후 export 함수 사용 방법파일 다운로드1
11846정성태3/15/201921691Linux: 6. getenv, setenv가 언어/운영체제마다 호환이 안 되는 문제
11845정성태3/15/201921787Linux: 5. Linux 응용 프로그램의 (C++) so 의존성 줄이기(ReleaseMinDependency) [3]
11844정성태3/14/201923121개발 환경 구성: 434. Visual Studio 2019 - 리눅스 프로젝트를 이용한 공유/실행(so/out) 프로그램 개발 환경 설정 [1]파일 다운로드1
11843정성태3/14/201918056기타: 75. MSDN 웹 사이트를 기본으로 영문 페이지로 열고 싶다면?
11842정성태3/13/201916423개발 환경 구성: 433. 마이크로소프트의 CoreCLR 프로파일러 예제를 Visual Studio CMake로 빌드하는 방법 [1]파일 다운로드1
11841정성태3/13/201916707VS.NET IDE: 132. Visual Studio 2019 - CMake의 컴파일러를 기본 g++에서 clang++로 변경
11840정성태3/13/201918354오류 유형: 526. 윈도우 10 Ubuntu App 환경에서는 USB 외장 하드 접근 불가
11839정성태3/12/201922365디버깅 기술: 124. .NET Core 웹 앱을 호스팅하는 Azure App Services의 프로세스 메모리 덤프 및 windbg 분석 개요 [3]
11838정성태3/7/201925948.NET Framework: 811. (번역글) .NET Internals Cookbook Part 1 - Exceptions, filters and corrupted processes [1]파일 다운로드1
11837정성태3/6/201939863기타: 74. 도서: 시작하세요! C# 7.3 프로그래밍 [10]
... 76  77  78  79  80  81  82  [83]  84  85  86  87  88  89  90  ...