Microsoft MVP성태의 닷넷 이야기
Math: 57. C# - 해석학적 방법을 이용한 최소 자승법 [링크 복사], [링크+제목 복사],
조회: 21593
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)
(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 해석학적 방법을 이용한 최소 자승법

다음의 글에 보면,

최소자승법 이해와 다양한 활용예 (Least Square Method)
; https://darkpgmr.tistory.com/56

최소 자승법(최소 제곱법)의 풀이로 대수적 방법과 해석학적 방법이 있다고 하는데요. 대수적 방법은 지난번에 설명했으니, 이번엔 해석학적 방법을 알아보겠습니다. (보다 더 자세한 설명은 "기초 수학으로 이해하는 머신러닝 알고리즘" 책을 참고하시고 여기서는 간략하게 넘어가겠습니다.)

그러니까, 결국 중요한 것은 데이터를 근사하는 방정식의,

fθ(x) = θ0 + θ1x

매개변수 값(θ0, θ1)을 정하는 것입니다. 이를 위해 데이터와의 오차를 계산하는 목적함수에 대해,



각각의 매개변수(θ0, θ1)로 편미분한 도함수를 다음과 같이 정리할 수 있습니다.




도함수가 정해졌으니, 이제 목적함수의 최솟값을 구하기 위해 경사하강법을 사용할 수 있고,

C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

따라서 도함수의 부호에 따라 매개변수를 근사하는 식은 다음과 같이 정리가 됩니다.




끝났군요. ^^ 이제 위의 동작을 코드로 잘 옮겨주면 연산이 진행될수록 θ0, θ1 값들은 근사한 1차 방정식의 모습을 갖추게 될 것입니다.




말이 좀 어려운데, 사실 코드로 보면 그다지 어렵지 않습니다. ^^

using MathNet.Numerics.Random;
using Microsoft.ML;
using Microsoft.ML.Data;
using PLplot;
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML.Data;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        // 표준화
        var xyList = ctx.Data.CreateEnumerable<ClickData>(data, false).NormalizeZscore();

        // 매개변수 초기화
        double theta0 = SystemRandomSource.Default.NextDouble();
        double theta1 = SystemRandomSource.Default.NextDouble();

        // 예측 함수
        Func<double, double> f = (x) => theta0 + theta1 * x;

        // 목적 함수
        Func<double, double, double> errorFunc = (x, y) => Math.Pow((y - f(x)), 2);
        Func<IEnumerable<ClickData>, double> E = (list) => 0.5 * list.ForEach((e) => errorFunc(e.X, e.Y)).Sum();

        // 학습률
        double ETA = 1e-03;

        // 오차의 차분
        double diff = 1.0;

        // 갱신 횟수
        int count = 0;

        // 오차의 차분이 0.01 이하가 될 때까지 매개변수 갱신을 반복
        double error = E(xyList);

        while (diff > 1e-02)
        {
            // 갱신 결과를 임시 변수에 저장
            double tmp_theta0 = theta0 - ETA * xyList.ForEach((e) => f(e.X) - e.Y).Sum();
            double tmp_theta1 = theta1 - ETA * xyList.ForEach((e) => (f(e.X) - e.Y) * e.X).Sum();

            // 매개변수 갱신
            theta0 = tmp_theta0;
            theta1 = tmp_theta1;

            // 이전 회의 오차와의 차분을 계산
            double currentError = E(xyList);
            diff = error - currentError;
            error = currentError;

            // 로그 출력
            count++;
            Console.WriteLine($"{count,4:#} 회째: theta0 = {theta0,8:#.0000}, theta1 = {theta1,8:#.0000}, 차분 = {diff,8:#.0000}");
        }

        // 그래프 출력
        double[] xData = xyList.Select((elem) => elem.X).ToArray();
        double[] yData = xyList.Select((elem) => elem.Y).ToArray();
        DrawPlotChart(xData, yData, f);
    }
}

/* 출력 결과
   1 회째: theta0 =   9.3955, theta1 =   2.6899, 차분 = 76048.3710
   2 회째: theta0 =  17.7905, theta1 =   4.5057, 차분 = 73036.8555
   3 회째: theta0 =  26.0177, theta1 =   6.2851, 차분 = 70144.5960
...[생략]...
 384 회째: theta0 = 428.9669, theta1 =  93.4392, 차분 =    .0145
 385 회째: theta0 = 428.9706, theta1 =  93.4400, 차분 =    .0139
 386 회째: theta0 = 428.9742, theta1 =  93.4407, 차분 =    .0133
 387 회째: theta0 = 428.9777, theta1 =  93.4415, 차분 =    .0128
 388 회째: theta0 = 428.9812, theta1 =  93.4422, 차분 =    .0123
 389 회째: theta0 = 428.9845, theta1 =  93.4430, 차분 =    .0118
 390 회째: theta0 = 428.9878, theta1 =  93.4437, 차분 =    .0113
 391 회째: theta0 = 428.9911, theta1 =  93.4444, 차분 =    .0109
 392 회째: theta0 = 428.9943, theta1 =  93.4451, 차분 =    .0105
 393 회째: theta0 = 428.9974, theta1 =  93.4458, 차분 =    .0101
 394 회째: theta0 = 429.0004, theta1 =  93.4464, 차분 =    .0097
*/

출력된 그래프를 보면 잘 근사한 것을 확인할 수 있습니다.

lsm_gradient_descent_1.png

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




그러니까 위의 소스 코드는 "기초 수학으로 이해하는 머신러닝 알고리즘" 책의 파이썬 코드를,

math-for-ml / regression1_linear.py 
; https://github.com/wikibook/math-for-ml/blob/master/regression1_linear.py

C# 버전으로 변경했다고 보면 되겠습니다. ^^




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/31/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2019-06-11 12시04분
다음의 글에 그래프가 수렴하는 애니메이션을 확인할 수 있습니다. ^^

C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; http://www.sysnet.pe.kr/2/0/11936

--------------------------------

[KIER energy+AI] 07 - Gaussian Process
; https://www.youtube.com/watch?v=9vIPzpzfw-o
정성태

... 106  107  108  109  110  111  112  113  114  115  [116]  117  118  119  120  ...
NoWriterDateCnt.TitleFile(s)
11025정성태8/12/201622360개발 환경 구성: 294. .NET Core 프로젝트에서 "Copy to Output Directory" 처리 [1]
11024정성태8/12/201621670오류 유형: 350. "nProtect GameMon" 실행 중에는 Visual Studio 디버깅이 안됩니다! [1]
11023정성태8/10/201623226개발 환경 구성: 293. Azure 구독 후 PaaS 서비스 만들어 보기
11022정성태8/10/201623875개발 환경 구성: 292. Azure Cloud Service 배포시 사용자 정의 작업을 추가하는 방법
11021정성태8/10/201620901오류 유형: 349. System.Runtime.Remoting.RemotingException - Type '..., ..., Version=..., Culture=neutral, PublicKeyToken=null' is not registered for activation [2]
11020정성태8/10/201623638VC++: 98. 원본과 대상 버퍼가 같은 경우 memcpy, wmemcpy 주의점
11019정성태8/10/201640299기타: 60. 도서: 시작하세요! C# 6.0 프로그래밍: 기본 문법부터 실전 예제까지 (2쇄 정오표)
11018정성태8/9/201624773.NET Framework: 600. 단일 메서드 내에서의 할당으로 알아보는 자바와 닷넷의 GC 차이점 [1]
11017정성태8/9/201626899웹: 33. HTTP 쿠키에 한글 값을 설정하는 방법
11016정성태8/7/201624033개발 환경 구성: 291. Windows Server Containers 소개
11015정성태8/7/201622278오류 유형: 348. Windows Server 2016 TP5에서 Windows Containers의 docker run 실행 시 encountered an error during Start failed in Win32
11014정성태8/6/201623066오류 유형: 347. Hyper-V Virtual Machine Management service Account does not have permission to open attachment
11013정성태8/6/201633869개발 환경 구성: 290. Windows 10에서 경험해 보는 Windows Containers와 docker [4]
11012정성태8/6/201623928오류 유형: 346. Windows 10에서 Windows Containers의 docker run 실행 시 encountered an error during CreateContainer failed in Win32 발생
11011정성태8/6/201625559기타: 59. outlook.live.com 메일 서비스의 아웃룩 POP3 설정하는 방법
11010정성태8/6/201622885기타: 58. Outlook에 설정한 SMTP/POP3(예:천리안 메일) 계정 암호를 잊어버린 경우
11009정성태8/3/201628079개발 환경 구성: 289. 2016-08-02부터 시작된 윈도우 10 1주년 업데이트에서 Bash Shell 사용 [8]
11008정성태8/1/201621926오류 유형: 345. 2의 30승 이상의 원소를 갖는 경우 버그가 발생하는 이진 검색(Binary Search) 코드
11007정성태8/1/201623659오류 유형: 344. RDP ActiveX 컨트롤로 특정 PC에 연결할 수 없을 때, 오류 상황을 해결하기 위한 팁파일 다운로드1
11006정성태7/22/201626601개발 환경 구성: 288. SSL 인증서를 Azure Cloud Service에 적용하는 방법
11005정성태7/22/201625260개발 환경 구성: 287. Let's Encrypt 인증서 업데이트 주기: 90일
11004정성태7/22/201620095오류 유형: 343. Invalid service definition or service configuration. Please see the Error List for more details.
11003정성태7/20/201627379VS.NET IDE: 110. Visual Studio 2015에서 .NET Core 응용 프로그램 개발 [1]
11002정성태7/20/201620854개발 환경 구성: 286. Microsoft Azure 서비스의 구독은 반드시 IE로!
11001정성태7/19/201631942.NET Framework: 599. .NET Core/SDK 설치 및 기본 사용법 [6]
11000정성태7/16/201620631오류 유형: 342. Microsoft Visual Studio 2010 Tools for Office Runtime (x86 and x64) 설치 시 오류
... 106  107  108  109  110  111  112  113  114  115  [116]  117  118  119  120  ...