Microsoft MVP성태의 닷넷 이야기
Math: 57. C# - 해석학적 방법을 이용한 최소 자승법 [링크 복사], [링크+제목 복사],
조회: 21500
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)
(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 해석학적 방법을 이용한 최소 자승법

다음의 글에 보면,

최소자승법 이해와 다양한 활용예 (Least Square Method)
; https://darkpgmr.tistory.com/56

최소 자승법(최소 제곱법)의 풀이로 대수적 방법과 해석학적 방법이 있다고 하는데요. 대수적 방법은 지난번에 설명했으니, 이번엔 해석학적 방법을 알아보겠습니다. (보다 더 자세한 설명은 "기초 수학으로 이해하는 머신러닝 알고리즘" 책을 참고하시고 여기서는 간략하게 넘어가겠습니다.)

그러니까, 결국 중요한 것은 데이터를 근사하는 방정식의,

fθ(x) = θ0 + θ1x

매개변수 값(θ0, θ1)을 정하는 것입니다. 이를 위해 데이터와의 오차를 계산하는 목적함수에 대해,



각각의 매개변수(θ0, θ1)로 편미분한 도함수를 다음과 같이 정리할 수 있습니다.




도함수가 정해졌으니, 이제 목적함수의 최솟값을 구하기 위해 경사하강법을 사용할 수 있고,

C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

따라서 도함수의 부호에 따라 매개변수를 근사하는 식은 다음과 같이 정리가 됩니다.




끝났군요. ^^ 이제 위의 동작을 코드로 잘 옮겨주면 연산이 진행될수록 θ0, θ1 값들은 근사한 1차 방정식의 모습을 갖추게 될 것입니다.




말이 좀 어려운데, 사실 코드로 보면 그다지 어렵지 않습니다. ^^

using MathNet.Numerics.Random;
using Microsoft.ML;
using Microsoft.ML.Data;
using PLplot;
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML.Data;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        // 표준화
        var xyList = ctx.Data.CreateEnumerable<ClickData>(data, false).NormalizeZscore();

        // 매개변수 초기화
        double theta0 = SystemRandomSource.Default.NextDouble();
        double theta1 = SystemRandomSource.Default.NextDouble();

        // 예측 함수
        Func<double, double> f = (x) => theta0 + theta1 * x;

        // 목적 함수
        Func<double, double, double> errorFunc = (x, y) => Math.Pow((y - f(x)), 2);
        Func<IEnumerable<ClickData>, double> E = (list) => 0.5 * list.ForEach((e) => errorFunc(e.X, e.Y)).Sum();

        // 학습률
        double ETA = 1e-03;

        // 오차의 차분
        double diff = 1.0;

        // 갱신 횟수
        int count = 0;

        // 오차의 차분이 0.01 이하가 될 때까지 매개변수 갱신을 반복
        double error = E(xyList);

        while (diff > 1e-02)
        {
            // 갱신 결과를 임시 변수에 저장
            double tmp_theta0 = theta0 - ETA * xyList.ForEach((e) => f(e.X) - e.Y).Sum();
            double tmp_theta1 = theta1 - ETA * xyList.ForEach((e) => (f(e.X) - e.Y) * e.X).Sum();

            // 매개변수 갱신
            theta0 = tmp_theta0;
            theta1 = tmp_theta1;

            // 이전 회의 오차와의 차분을 계산
            double currentError = E(xyList);
            diff = error - currentError;
            error = currentError;

            // 로그 출력
            count++;
            Console.WriteLine($"{count,4:#} 회째: theta0 = {theta0,8:#.0000}, theta1 = {theta1,8:#.0000}, 차분 = {diff,8:#.0000}");
        }

        // 그래프 출력
        double[] xData = xyList.Select((elem) => elem.X).ToArray();
        double[] yData = xyList.Select((elem) => elem.Y).ToArray();
        DrawPlotChart(xData, yData, f);
    }
}

/* 출력 결과
   1 회째: theta0 =   9.3955, theta1 =   2.6899, 차분 = 76048.3710
   2 회째: theta0 =  17.7905, theta1 =   4.5057, 차분 = 73036.8555
   3 회째: theta0 =  26.0177, theta1 =   6.2851, 차분 = 70144.5960
...[생략]...
 384 회째: theta0 = 428.9669, theta1 =  93.4392, 차분 =    .0145
 385 회째: theta0 = 428.9706, theta1 =  93.4400, 차분 =    .0139
 386 회째: theta0 = 428.9742, theta1 =  93.4407, 차분 =    .0133
 387 회째: theta0 = 428.9777, theta1 =  93.4415, 차분 =    .0128
 388 회째: theta0 = 428.9812, theta1 =  93.4422, 차분 =    .0123
 389 회째: theta0 = 428.9845, theta1 =  93.4430, 차분 =    .0118
 390 회째: theta0 = 428.9878, theta1 =  93.4437, 차분 =    .0113
 391 회째: theta0 = 428.9911, theta1 =  93.4444, 차분 =    .0109
 392 회째: theta0 = 428.9943, theta1 =  93.4451, 차분 =    .0105
 393 회째: theta0 = 428.9974, theta1 =  93.4458, 차분 =    .0101
 394 회째: theta0 = 429.0004, theta1 =  93.4464, 차분 =    .0097
*/

출력된 그래프를 보면 잘 근사한 것을 확인할 수 있습니다.

lsm_gradient_descent_1.png

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




그러니까 위의 소스 코드는 "기초 수학으로 이해하는 머신러닝 알고리즘" 책의 파이썬 코드를,

math-for-ml / regression1_linear.py 
; https://github.com/wikibook/math-for-ml/blob/master/regression1_linear.py

C# 버전으로 변경했다고 보면 되겠습니다. ^^




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/31/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2019-06-11 12시04분
다음의 글에 그래프가 수렴하는 애니메이션을 확인할 수 있습니다. ^^

C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; http://www.sysnet.pe.kr/2/0/11936

--------------------------------

[KIER energy+AI] 07 - Gaussian Process
; https://www.youtube.com/watch?v=9vIPzpzfw-o
정성태

... 46  47  48  [49]  50  51  52  53  54  55  56  57  58  59  60  ...
NoWriterDateCnt.TitleFile(s)
12715정성태7/17/202122514오류 유형: 736. Windows - MySQL zip 파일 버전의 "mysqld --skip-grant-tables" 실행 시 비정상 종료 [1]
12714정성태7/16/202115929오류 유형: 735. VCRUNTIME140.dll, MSVCP140.dll, VCRUNTIME140.dll, VCRUNTIME140_1.dll이 없어 exe 실행이 안 되는 경우
12713정성태7/16/202117320.NET Framework: 1077. C# - 동기 방식이면서 비동기 규약을 따르게 만드는 Task.FromResult파일 다운로드1
12712정성태7/15/202116271개발 환경 구성: 579. Azure - 리눅스 호스팅의 Site Extension 제작 방법
12711정성태7/15/202116244개발 환경 구성: 578. Azure - Java Web App Service를 위한 Site Extension 제작 방법
12710정성태7/15/202118877개발 환경 구성: 577. MQTT - emqx.io 서비스 소개
12709정성태7/14/202114417Linux: 42. 실행 중인 docker 컨테이너에 대한 구동 시점의 docker run 명령어를 확인하는 방법
12708정성태7/14/202118681Linux: 41. 리눅스 환경에서 디스크 용량 부족 시 원인 분석 방법
12707정성태7/14/202185827오류 유형: 734. MySQL - Authentication method 'caching_sha2_password' not supported by any of the available plugins.
12706정성태7/14/202117017.NET Framework: 1076. C# - AsyncLocal 기능을 CallContext만으로 구현하는 방법 [2]파일 다운로드1
12705정성태7/13/202117471VS.NET IDE: 168. x64 DLL 프로젝트의 컨트롤이 Visual Studio의 Designer에서 보이지 않는 문제 - 두 번째 이야기
12704정성태7/12/202116205개발 환경 구성: 576. Azure VM의 서비스를 Azure Web App Service에서만 접근하도록 NSG 설정을 제한하는 방법
12703정성태7/11/202121566개발 환경 구성: 575. Azure VM에 (ICMP) ping을 허용하는 방법
12702정성태7/11/202117342오류 유형: 733. TaskScheduler에 등록된 wacs.exe의 Let's Encrypt 인증서 업데이트 문제
12701정성태7/9/202116845.NET Framework: 1075. C# - ThreadPool의 스레드는 반환 시 ThreadStatic과 AsyncLocal 값이 초기화 될까요?파일 다운로드1
12700정성태7/8/202117332.NET Framework: 1074. RuntimeType의 메모리 누수? [1]
12699정성태7/8/202115888VS.NET IDE: 167. Visual Studio 디버깅 중 GC Heap 상태를 보여주는 "Show Diagnostic Tools" 메뉴 사용법
12698정성태7/7/202120099오류 유형: 732. Windows 11 업데이트 시 3% 또는 0%에서 다운로드가 멈춘 경우
12697정성태7/7/202115165개발 환경 구성: 574. Windows 11 (Insider Preview) 설치하는 방법
12696정성태7/6/202116110VC++: 146. 운영체제의 스레드 문맥 교환(Context Switch)을 유사하게 구현하는 방법파일 다운로드2
12695정성태7/3/202116164VC++: 145. C 언어의 setjmp/longjmp 기능을 Thread Context를 이용해 유사하게 구현하는 방법파일 다운로드1
12694정성태7/2/202118122Java: 24. Azure - Spring Boot 앱을 Java SE(Embedded Web Server)로 호스팅 시 로그 파일 남기는 방법 [1]
12693정성태6/30/202115060오류 유형: 731. Azure Web App Site Extension - Failed to install web app extension [...]. {1}
12692정성태6/30/202115545디버깅 기술: 180. Azure - Web App의 비정상 종료 시 남겨지는 로그 확인
12691정성태6/30/202115720개발 환경 구성: 573. 테스트 용도이지만 테스트에 적합하지 않은 Azure D1 공유(shared) 요금제
12690정성태6/28/202116745Java: 23. Azure - 자바(Java)로 만드는 Web App Service - Tomcat 호스팅
... 46  47  48  [49]  50  51  52  53  54  55  56  57  58  59  60  ...