Microsoft MVP성태의 닷넷 이야기
글쓴 사람
홈페이지
첨부 파일

C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법

일단 행렬식을 이용하면,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

범용적으로 다항식에 대한 근사를 최소 자승법(최소 제곱법)으로 구할 수 있습니다. 하지만, 만약 대상을 "1차 함수"로 직선에 대한 근사만을 구한다면 복잡한 행렬 연산 없이 for 문만으로 매개 변수를 구하는 것이 가능합니다.

가령, 지난번 예제의 행렬식을 보겠습니다.

θ0 + θ1x1 = y1
θ0 + θ1x2 = y2
...
θ0 + θ1xn = yn



AX=B
A-1AX=A-1B
X=A-1B (A-1 == 의사역행렬)

결국 중요한 것은, 위의 식에서 A-1B 연산 결과를 구하는 것인데요, 헷갈리니까 일단 의사역행렬을 A+라고 정의하고, 이것을 행렬 라이브러리를 이용하면 단순히 Matrix 타입의 PseudoInverse를 호출하는 것으로 쉽게 해결했지만 만약 직접 구하고 싶다면 다음과 같은 과정을 거쳐야 합니다.

A+ = (ATA)-1AT

따라서, 매개변수를 나타내는 행렬 X는 B 행렬까지 곱해주면서 다음과 같이 계산할 수 있습니다.

X = A+ * B
  = (ATA)-1AT * B

이제 남은 작업은 위의 식을 간략하게 바꿔주면 됩니다. ^^




이 상태에서 A 행렬을 보면 "n x 2" 행렬이고 이것의 전치 행렬(AT)은 "2 x n" 행렬이 됩니다. 또한 B 행렬도 "n x 1" 행렬임을 감안하면 연산 결과가 다음과 같이 정리될 수 있습니다.

X = (ATA)-1AT * B
  = ((2 x n) * (n x 2))-1 * (2 x n) * (n x 1)
  = (2 x 2)-1 * (2 x 1)
  = (2 x 2) * (2 x 1)
  = (2 x 1)

즉, X 행렬은 (당연히 1차 함수의 매개변수 2개를 구하는 것이므로) 언제나 "2 x 1" 행렬이 나오므로 X 행렬의 인덱스에 해당하는 값을 정리해 볼 수도 있습니다. 이 과정을 단계별로 천천히 ^^ 접근해 볼까요?





2 x 2 행렬의 역행렬은 다음과 같이 간략화할 수 있으므로,



ATA 결과의 역행렬을 구할 수 있습니다.



위의 결과를 2 x n 행렬의 AT와 연산을 하면 과정이 좀 복잡하니 어차피 행렬곱은 결합법칙이 성립하므로 뒤의 AT B 연산을 먼저 다음과 같이 정리할 수 있습니다.



마지막으로 (ATA)-1(2 x 2 행렬)에 AT * B(2 x 1 행렬)을 곱하는 것이므로 다음과 같이 최종 정리가 됩니다.



따라서 1차 방정식의 매개변수는 이렇게 단일 식으로 각각 구할 수 있습니다.






구하는 과정에 정리할 식이 좀 끼어들어서 그렇지, 사실 C# 코드로 위의 계산을 나타내면 별거 아닙니다. ^^

// 단순 for 루프를 이용한 계산
private static (double theta1, double theta0) GetEquation2(double[] xData, double[] yData)
{
    double sumAnBn = 0.0;
    double sumAn = 0.0;
    double sumBn = 0.0;
    double sumAnAn = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        sumAnBn += xData[i] * yData[i];
        sumAn += xData[i];
        sumBn += yData[i];
        sumAnAn += xData[i] * xData[i];
    }

    int n = xData.Length;
    double Q = sumAnAn * n - sumAn * sumAn;

    double theta1 = (n * sumAnBn - sumAn * sumBn) / Q;
    double theta0 = (-sumAn * sumAnBn + sumAnAn * sumBn) / Q;

    return (theta1, theta0);
}

// 행렬을 이용한 계산
private static (double theta1, double theta0) GetEquation(double[] xData, double[] yData)
{
    Matrix matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector add1 = Vector.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    Matrix matAwith1 = matA.InsertColumn(1, add1);

    Console.WriteLine(matAwith1);
    Matrix matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix pinvMatA = matAwith1.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix matX = pinvMatA * matB;

    return (matX[0, 0], matX[1, 0]);
}

당연하겠지만 행렬식을 이용했던 GetEquation 메서드와 비교해 보면,

{
    // y = theta0 + (theta1 * x)
    (double theta1, double theta0) = GetEquation(xData, yData);
    Console.WriteLine($"[method1] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method1] y = 231.545758451005 + 1.39551018043075 * x
    */
}

{
    (double theta1, double theta0) = GetEquation2(xData, yData);
    Console.WriteLine($"[method2] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method2] y = 231.545758451006 + 1.39551018043075 * x
    */
}

부동소수점 계산임을 감안해 값이 거의 동일하다는 것을 알 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]





[최초 등록일: ]
[최종 수정일: 5/28/2019 ]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer@outlook.com

비밀번호

댓글 쓴 사람
 



2019-05-28 10시35분
선형 최소 제곱법(Linear Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5579
정성태

[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
12268정성태7/15/202021오류 유형: 631. .NET Core 웹 응용 프로그램 오류 - HTTP Error 500.35 - ANCM Multiple In-Process Applications in same Process
12267정성태7/15/202041.NET Framework: 927. C# - 윈도우 프로그램에서 Credential Manager를 이용한 보안 정보 저장파일 다운로드1
12266정성태7/14/202041오류 유형: 630. 사용자 계정을 지정해 CreateService API로 서비스를 등록한 경우 "Error 1069: The service did not start due to a logon failure." 오류발생
12265정성태7/10/202053오류 유형: 629. Visual Studio - 웹 애플리케이션 실행 시 "Unable to connect to web server 'IIS Express'." 오류 발생
12264정성태7/9/202050오류 유형: 628. docker: Error response from daemon: Conflict. The container name "..." is already in use by container "...".
12261정성태7/9/2020230VS.NET IDE: 148. 윈도우 10에서 .NET Core 응용 프로그램을 리눅스 환경에서 실행하는 2가지 방법 - docker, WSL 2 [3]
12260정성태7/8/202089.NET Framework: 926. C# - ETW를 이용한 ThreadPool 스레드 감시파일 다운로드1
12259정성태7/8/202042오류 유형: 627. nvlddmkm.sys의 BAD_POOL_HEADER BSOD 문제
12258정성태7/8/2020113기타: 77. DataDog APM 간략 소개
12257정성태7/7/202079.NET Framework: 925. C# - ETW를 이용한 Monitor Enter/Exit 감시파일 다운로드1
12256정성태7/7/2020132.NET Framework: 924. C# - Reflection으로 변경할 수 없는 readonly 정적 필드 [4]
12255정성태7/6/202089.NET Framework: 923. C# - ETW(Event Tracing for Windows)를 이용한 Finalizer 실행 감시파일 다운로드1
12254정성태7/2/202061오류 유형: 626. git - REMOTE HOST IDENTIFICATION HAS CHANGED!
12253정성태7/2/2020140.NET Framework: 922. C# - .NET ThreadPool의 Local/Global Queue파일 다운로드1
12252정성태7/2/2020122.NET Framework: 921. C# - I/O 스레드를 사용한 비동기 소켓 서버/클라이언트파일 다운로드2
12251정성태7/1/2020145.NET Framework: 920. C# - 파일의 비동기 처리 유무에 따른 스레드 상황파일 다운로드2
12250정성태7/1/2020379.NET Framework: 919. C# - 닷넷에서의 진정한 비동기 호출을 가능케 하는 I/O 스레드 사용법 [1]파일 다운로드1
12249정성태6/29/202055오류 유형: 625. Microsoft SQL Server 2019 RC1 Setup - 설치 제거 시 Warning 26003 오류 발생
12248정성태6/29/202058오류 유형: 624. SQL 서버 오류 - service-specific error code 17051
12247정성태6/29/2020161.NET Framework: 918. C# - 불린 형 상수를 반환값으로 포함하는 3항 연산자 사용 시 단축 표현 권장(IDE0075) [2]파일 다운로드1
12246정성태6/29/202096.NET Framework: 917. C# - USB 관련 ETW(Event Tracing for Windows)를 이용한 키보드 입력을 감지하는 방법
12245정성태6/25/2020276.NET Framework: 916. C# - Task.Yield 사용법 (2) [2]파일 다운로드1
12244정성태6/29/2020141.NET Framework: 915. ETW(Event Tracing for Windows)를 이용한 닷넷 프로그램의 내부 이벤트 활용파일 다운로드1
12243정성태6/23/202090VS.NET IDE: 147. Visual C++ 프로젝트 - .NET Core EXE를 "Debugger Type"으로 지원하는 기능 추가
12242정성태6/24/202065오류 유형: 623. AADSTS90072 - User account '...' from identity provider 'live.com' does not exist in tenant 'Microsoft Services'
[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...