Microsoft MVP성태의 닷넷 이야기
.NET Framework: 840. ML.NET 데이터 정규화 [링크 복사], [링크+제목 복사]
조회: 1328
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

ML.NET 데이터 정규화

ML.NET으로 데이터 전처리 하는 방법은 다음의 글을 참고하시면 됩니다.

Prepare Data
; https://docs.microsoft.com/en-us/dotnet/machine-learning/how-to-guides/prepare-data-ml-net

현재(2019-05-28) NormalizationCatalog에서 제공하는 정규화 방법은 대략 다음과 같습니다.

  • NormalizeBinning
  • NormalizeGlobalContrast
  • NormalizeLogMeanVariance
  • NormalizeLpNorm
  • NormalizeMeanVariance
  • NormalizeMinMax
  • NormalizeSupervised?Binning

그런데, "기초 수학으로 이해하는 머신러닝 알고리즘" 책에 보면 z-score 정규화가 나오는데요.

표준 점수
; https://ko.wikipedia.org/wiki/%ED%91%9C%EC%A4%80_%EC%A0%90%EC%88%98

표준값 z는 원수치인 x가 평균에서 얼마나 떨어져 있는지를 나타낸다. 음수이면 평균이하, 양수이면 평균이상이다

이것과 매핑되는 ML.NET의 정규화는 없습니다. 이런 경우, ML.NET에 자연스럽게 녹여낼 수 있도록 사용자 정의 transformer 구현을 제공합니다.

How can I define my own transformation of data?
; https://github.com/dotnet/machinelearning/blob/master/docs/code/MlNetCookBook.md#user-content-how-can-i-define-my-own-transformation-of-data

그런데, 굳이 저렇게 해서 얻는 장점이 얼마나 많을까 싶습니다. 따라서 그냥 다음과 같이 로드된 데이터를 직접 처리해도 상관없겠습니다.

double[] xData = xyList.Select(xy => xy.X).ToArray();
xData = NormalizeZscore(xData);

private static double [] NormalizeZscore(double[] xData)
{
    double mean = Statistics.Mean(xData);
    double sd = Statistics.PopulationStandardDeviation(xData);

    double[] normalized = new double[xData.Length];

    for (int i = 0; i < xData.Length; i ++)
    {
        normalized[i] = (xData[i] - mean) / sd;
    }

    return normalized;
}

예를 들어 입력 데이터가 다음과 같을 때,

x,y
235,591
216,539
148,413
35,310
85,308
204,519
49,325
25,332
173,498
191,498
134,392
99,334
117,385
112,387
162,425
272,659
159,400
159,427
59,319
198,522

NormalizeZscore가 반환한 x 데이터의 min/max는 -1.7406785589738 ~ 1.94669368859505에 해당합니다. 그 외에, ML.NET의 정규화 관련 메서드를 수행해 보면,

using MathNet.Numerics.Statistics;
using Microsoft.ML;
using Microsoft.ML.Data;
using Microsoft.ML.Transforms;
using System;
using System.Collections.Generic;
using System.Linq;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        var xColumn = data.Schema[0];
        var yColumn = data.Schema[1];
        
        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMeanVariance(xColumn.Name);
            ShowResult("NormalizeMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeLogMeanVariance(xColumn.Name);
            ShowResult("NormalizeLogMeanVariance", ctx, data, func);
        }

        {
            Func<NormalizingEstimator> func = () => ctx.Transforms.NormalizeMinMax(xColumn.Name);
            ShowResult("NormalizeMinMax", ctx, data, func);
        }

        {
            var xData = data.GetColumn<double>(xColumn).NormalizeZscore();
            Console.WriteLine($"[NormalizeZscore] Min: {xData.Min()}, Max: {xData.Max()}");
        }
    }

    private static void ShowResult(string title, MLContext ctx, IDataView data, Func<NormalizingEstimator> func)
    {
        var transformer = func();
        ITransformer textTransformer = transformer.Fit(data);
        IDataView normalizedData = textTransformer.Transform(data);

        var xyList = ctx.Data.CreateEnumerable<ClickData>(normalizedData, false);
        var xData = xyList.Select(xy => xy.X);
        Console.WriteLine($"[{title}] Min: {xData.Min()}, Max: {xData.Max()}");
    }
}

public static class Extension
{
    public static IEnumerable<double> NormalizeZscore(this IEnumerable<double> data)
    {
        double mean = Statistics.Mean(data);
        double std = Statistics.PopulationStandardDeviation(data);

        foreach (var item in data)
        {
            yield return (item - mean) / std;
        }
    }
}

각각의 종류에 따라 다음과 같은 결과를 갖습니다.

[NormalizeMeanVariance] Min: 0.159596722144764, Max: 1.73641233693504
[NormalizeLogMeanVariance] Min: 0.00667093285901543, Max: 0.899555532449876
[NormalizeMinMax] Min: 0.0919117647058823, Max: 1

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




참고로, Fit 호출 시 오류가 발생한다면?

Unhandled Exception: System.ArgumentOutOfRangeException: Wrong column type for column X. Expected: Single, Double, Vector of Single or Vector of Double. Got: Int32.
Parameter name: column
   at Microsoft.ML.Transforms.NormalizeTransform.LogMeanVarUtils.CreateBuilder(LogMeanVarianceColumnOptions column, IHost host, Int32 srcIndex, DataViewType srcType, DataViewRowCursor cursor)
   at Microsoft.ML.Transforms.NormalizingTransformer.Train(IHostEnvironment env, IDataView data, ColumnOptionsBase[] columns)
   at Program.Main(String[] args) in F:\ConsoleApp1\ConsoleApp1\Program.cs:line 18

해당 transformer의 대상 타입이 int가 들어왔는데 float, double, vector of float/double/vector 유형이어야만 하기 때문입니다. 따라서 정규화 대상이 되는 칼럼의 모델 타입을,

class ClickData
{
    [LoadColumn(0)]
    public int X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}

다음과 같이 적절하게 변경하면 됩니다.

class ClickData
{
    [LoadColumn(0)]
    public double X { get; set; }

    [LoadColumn(1)]
    public int Y { get; set; }
}




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]





[최초 등록일: ]
[최종 수정일: 5/30/2019 ]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer@outlook.com

비밀번호

댓글 쓴 사람
 




[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
12339정성태9/21/202011오류 유형: 655. 코어 모드의 윈도우는 GUI 모드의 윈도우로 교체가 안 됩니다.
12338정성태9/21/20209오류 유형: 654. 우분투 설치 시 "CHS: Error 2001 reading sector ..." 오류 발생
12337정성태9/21/202012오류 유형: 653. Windows - Time zone 설정을 바꿔도 반영이 안 되는 경우
12336정성태9/21/202045.NET Framework: 942. C# - WOL(Wake On Lan) 구현
12335정성태9/21/20207Linux: 31. 우분투 20.04 초기 설정 - 고정 IP 및 SSH 설치
12334정성태9/21/20208오류 유형: 652. windbg - !py 확장 명령어 실행 시 "failed to find python interpreter"
12333정성태9/20/202060.NET Framework: 941. C# - 전위/후위 증감 연산자에 대한 오버로딩 구현 (2)
12332정성태9/18/202043.NET Framework: 940. C# - Windows Forms ListView와 DataGridView의 예제 코드파일 다운로드1
12331정성태9/18/202043오류 유형: 651. repadmin /syncall - 0x80090322 The target principal name is incorrect.
12330정성태9/20/2020154.NET Framework: 939. C# - 전위/후위 증감 연산자에 대한 오버로딩 구현 [2]파일 다운로드1
12329정성태9/16/202063오류 유형: 650. ASUS 메인보드 관련 소프트웨어 설치 후 ArmouryCrate.UserSessionHelper.exe 프로세스 무한 종료 현상
12328정성태9/16/202047VS.NET IDE: 150. TFS의 이력에서 "Get This Version"과 같은 기능을 Git으로 처리한다면?
12327정성태9/12/2020106.NET Framework: 938. C# - ICS(Internet Connection Sharing) 제어파일 다운로드1
12326정성태9/12/202099개발 환경 구성: 516. Azure VM의 Network Adapter를 실수로 비활성화한 경우
12325정성태9/12/202091개발 환경 구성: 515. OpenVPN - 재부팅 후 ICS(Internet Connection Sharing) 기능이 동작 안하는 문제
12324정성태9/11/2020137개발 환경 구성: 514. smigdeploy.exe를 이용한 Windows Server 2016에서 2019로 마이그레이션 방법
12323정성태9/11/2020119오류 유형: 649. Copy Database Wizard - The job failed. Check the event log on the destination server for details.
12322정성태9/11/2020140개발 환경 구성: 513. Azure VM의 RDP 접속 위치 제한
12321정성태9/11/2020118오류 유형: 648. netsh http add urlacl - Error: 183 Cannot create a file when that file already exists.
12320정성태9/11/2020171개발 환경 구성: 512. RDP(원격 데스크톱) 접속 시 비밀 번호를 한 번 더 입력해야 하는 경우
12319정성태9/10/2020130오류 유형: 647. smigdeploy.exe를 Windows Server 2016에서 실행할 때 .NET Framework 미설치 오류 발생
12318정성태9/9/2020132오류 유형: 646. OpenVPN - "TAP-Windows Adapter V9" 어댑터의 "Network cable unplugged" 현상
12317정성태9/10/2020132개발 환경 구성: 511. Beats 용 Kibana 기본 대시 보드 구성 방법
12316정성태9/8/2020298디버깅 기술: 170. WinDbg Preview 버전부터 닷넷 코어 3.0 이후의 메모리 덤프에 대해 sos.dll 자동 로드
12315정성태9/7/2020245개발 환경 구성: 510. Logstash - FileBeat을 이용한 IIS 로그 처리 [2]
[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...