Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

GeoGebra 기하 (21) - 반전기하학의 직선 및 원에 관한 반사변환

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

반전기하학에 대한 작도를 알아보겠습니다.

반전기하학
; https://ko.wikipedia.org/wiki/%EB%B0%98%EC%A0%84%EA%B8%B0%ED%95%98%ED%95%99

우선 평면에서 한 점을 선에 대해 반사변환을 해보겠습니다.

reflect_line_1.png

사실 이것은 너무나 직관적으로, 해당 선에 대하 수직선을 긋고(Perpendicular Line) 그 교점을 중심으로 원을 그리면(Circle with Center through Point) 또 다른 점의 위치가 결정이 됩니다.

reflect_line_2.png




원에 대한 반사변환은 좀 특이합니다. 지난 글에서,

GeoGebra 기하 (18) - 원의 중심 및 접선
; https://www.sysnet.pe.kr/2/0/11594

(0,0) 원점을 중심으로 하는 원의 방정식을,

x12 + y12 =  r2 (r == 반지름)

그려 보면,

reflect_circle_1.png

피타고라스 정리에 의해 쉽게 그 이유가 나옵니다.

(선분 AF)2 + (선분 FC)2 = (선분 AC)2

선분 AF = x 축의 값
선분 FC = y 축의 값
선분 AC = 반지름 r

x12 + y12 =  r2

r2이 되는 또 다른 경우를 보겠습니다. 위의 그림에서 다음과 같이 선분 AC에 임의의 점을 하나 찍었습니다.

reflect_circle_2.png

점 H는 알고 있고 점 ?의 위치는 알 수 없는 상태입니다. 이때 다음과 같은 공식을 만족하는 점 ?의 위치가 있을 것입니다.

(선분 AH) * (선분 A?) = (선분 AC)2

예를 들어 점 H의 위치가 점 C와 같다면,

(선분 AH) * (선분 AH) = (선분 AC)2

결국 원 호를 이루는 모든 점이 될 것입니다. 그런데 점 H를 직선을 따라 안쪽으로 이동시켰을 경우, 즉 반지름 r보다 값이 작아진다면 점 ?의 위치는 r보다 커져야 할 것입니다. 바로 그 위치를 작도해 보는 것입니다.

방법은, 선분 AH에 수직 이등분선을 긋고(Perpendicular Bisector),

reflect_circle_3.png

그 선과 원 A와 만나는 교점을 J라고 했을 때, 이제 점 A와 그 교점 J를 현으로 하는 원을 구해야 합니다. 이를 위해 현의 중점으로부터 역시 수직 이등분선을 그으면,

reflect_circle_4.png

위와 같이 수직 이등분선과 선분 AC의 연장선 위에 만나는 교점 K가 결정되는데 바로 그 위치가 ?에 해당합니다. 그래서 결국 다음의 공식이 성립합니다.

(선분 AH) * (선분 AK) = r2

증명은 다음과 같이 정리(Show / Hide Object) 후 보조선을 그어 보면 모습을 드러냅니다.

reflect_circle_5.png

삼각형 AJH는 이등변 삼각형이고 삼각형 JKA 또한 이등변 삼각형입니다. 이로부터 삼각형 JKA의 각 KJA와 각 KAJ는 같기 때문에 두 개의 이등변 삼각형은 두 각이 같으므로 닮음 조건을 만족합니다. 따라서 밑변과 빗변의 비율이 같으므로 다음의 식이 성립합니다.

    (선분 AH) : (선분 AJ) = (선분 JA) : (선분 JK)
==> (선분 AJ) * (선분 JA) = (선분 AH) * (선분 JK)
==> r * r = (선분 AH) * (선분 JK)
==> r2 = (선분 AH) * (선분 AK)

물론 반대로도 위치를 잡을 수 있는데 이 과정은 위의 것과 반대로 하면 됩니다. 예를 들어, 점 K를 다음과 같이 원 밖에서 결정했을 때,

reflect_circle_6.png

점 K를 중심으로 선분 AK를 반지름으로 하는 원을 그리면 원 K와 원 A의 교점이 생기고,

reflect_circle_7.png

그 교점 J로부터 선분 AC에 수선의 발을 내리면(Perpendicular Line),

reflect_circle_8.png

점 I가 결정되므로 선분 IA를 반지름으로 하는 원을 그리면 점 H가 결정되는 것으로 완료됩니다.




자, 그럼 이제 간단하게 애니메이션 테스트를 할 수 있습니다. 점 H의 위치를 원 A의 반지름 내에서 이동해 주면 r2을 만족하기 위해 점 K의 위치가 그에 맞게 이동합니다.

reflect_circle_9.gif

이를 달리 말하면, 선분 AC의 구간이 (K가 아무리 멀어져도) 선분 CK의 구간과 일대일 대응 관계를 수립한다는 것입니다. 단지, 여기서 문제가 되는 것은 점 H가 원 A의 중심에 가까워져 그 길이가 0이 되면 점 K의 지점이 무한대로 멀어진다는 것인데, 점 A의 반전은 "무한원점"에 대응한다면서 여전히 일대일 대응 관계가 수립하는데 문제가 없다고 합니다.

(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]





[최초 등록일: ]
[최종 수정일: 7/11/2018 ]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer@outlook.com

비밀번호

댓글 쓴 사람
 




... 16  17  18  19  20  21  22  23  24  [25]  26  27  28  29  30  ...
NoWriterDateCnt.TitleFile(s)
11741정성태10/15/20181424Phone: 13. Android - LinearLayout 간략 설명
11740정성태10/15/20182195사물인터넷: 51. Synology NAS(DS216+II)를 이용한 원격 컴퓨터의 전원 스위치 제어
11739정성태10/15/20183331Windows: 151. 윈도우 10의 전원 관리가 "균형 조정(Balanced)"으로 바뀌는 문제
11738정성태4/1/20202413오류 유형: 494. docker - 윈도우에서 실행 시 "unknown shorthand flag" 오류
11737정성태10/13/20181566오류 유형: 493. Azure Kudu - There are 395 items in this directory, but maxViewItems is set to 299
11736정성태10/12/20182231오류 유형: 492. Visual Studio 로딩 시 오류 - The 'Scc Display Information' package did not load correctly.
11735정성태10/12/20184045VS.NET IDE: 129. Visual Studio - 특정 문자(열)를 개행 문자로 바꾸는 방법
11734정성태10/10/20181862Linux: 4. Synology NAS(DS216+II)에 FTDI 장치 연결 후 C#(.NET Core)으로 DTR 제어파일 다운로드1
11733정성태10/11/20182891Linux: 3. Synology NAS(DS216+II)에서 FTDI 장치를 C/C++로 제어
11732정성태10/10/20182639디버깅 기술: 119. windbg 분석 사례 - 종료자(Finalizer)에서 예외가 발생한 경우 비정상 종료(Crash) 발생파일 다운로드1
11731정성태10/9/20182056개발 환경 구성: 409. C# - REST API를 이용해 Azure Kudu 서비스 이용 - 웹 앱 확장 처리파일 다운로드1
11730정성태10/9/20182229개발 환경 구성: 408. C# - REST API를 이용해 Azure Kudu 서비스 이용 - 파일 처리파일 다운로드1
11729정성태11/18/20182746Windows: 150. 윈도우에서 ARP Cache 목록 확인 및 삭제하는 방법
11728정성태10/9/20182421사물인터넷: 50. Audio Jack 커넥터의 IR 적외선 송신기 [1]
11727정성태10/10/20182444오류 유형: 491. Visual Studio의 리눅스 SSH 원격 연결 - "Connectivity Failure. Please make sure host name and port number are correct."
11726정성태10/7/20183458사물인터넷: 49. 라즈베리 파이를 이용해 원격 컴퓨터의 전원 스위치 제어파일 다운로드1
11724정성태10/5/20183426개발 환경 구성: 407. 유니코드와 한글 - "Hangul Compatibility Jamo"파일 다운로드1
11723정성태10/4/20182083개발 환경 구성: 406. "Docker for Windows" 컨테이너 내의 .NET Core 응용 프로그램에서 직렬 포트(Serial Port, COM Port) 사용 방법
11722정성태10/4/20182541.NET Framework: 798. C# - Hyper-V 가상 머신의 직렬 포트와 연결된 Named Pipe 간의 통신파일 다운로드1
11721정성태10/4/20183127.NET Framework: 797. Linux 환경의 .NET Core 응용 프로그램에서 직렬 포트(Serial Port, COM Port) 사용 방법파일 다운로드1
11720정성태10/4/20183601개발 환경 구성: 405. Hyper-V 가상 머신에서 직렬 포트(Serial Port, COM Port) 사용
11719정성태10/4/20183356.NET Framework: 796. C# - 인증서를 윈도우에 설치하는 방법
11718정성태8/4/20201924개발 환경 구성: 404. (opkg가 설치된) Synology NAS(DS216+II)에 cmake 설치
11717정성태10/3/20182046사물인터넷: 48. 넷두이노의 C# 네트워크 프로그램
11716정성태10/3/20182736사물인터넷: 47. Raspberry PI Zero (W)에 FTDI 장치 연결 후 C/C++로 DTR 제어파일 다운로드1
11715정성태10/3/20182692사물인터넷: 46. Raspberry PI Zero (W)에 docker 설치
... 16  17  18  19  20  21  22  23  24  [25]  26  27  28  29  30  ...