Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법

일단 행렬식을 이용하면,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

범용적으로 다항식에 대한 근사를 최소 자승법(최소 제곱법)으로 구할 수 있습니다. 하지만, 만약 대상을 "1차 함수"로 직선에 대한 근사만을 구한다면 복잡한 행렬 연산 없이 for 문만으로 매개 변수를 구하는 것이 가능합니다.

가령, 지난번 예제의 행렬식을 보겠습니다.

θ0 + θ1x1 = y1
θ0 + θ1x2 = y2
...
θ0 + θ1xn = yn



AX=B
A-1AX=A-1B
X=A-1B (A-1 == 의사역행렬)

결국 중요한 것은, 위의 식에서 A-1B 연산 결과를 구하는 것인데요, 헷갈리니까 일단 의사역행렬을 A+라고 정의하고, 이것을 행렬 라이브러리를 이용하면 단순히 Matrix 타입의 PseudoInverse를 호출하는 것으로 쉽게 해결했지만 만약 직접 구하고 싶다면 다음과 같은 과정을 거쳐야 합니다.

A+ = (ATA)-1AT

따라서, 매개변수를 나타내는 행렬 X는 B 행렬까지 곱해주면서 다음과 같이 계산할 수 있습니다.

X = A+ * B
  = (ATA)-1AT * B

이제 남은 작업은 위의 식을 간략하게 바꿔주면 됩니다. ^^




이 상태에서 A 행렬을 보면 "n x 2" 행렬이고 이것의 전치 행렬(AT)은 "2 x n" 행렬이 됩니다. 또한 B 행렬도 "n x 1" 행렬임을 감안하면 연산 결과가 다음과 같이 정리될 수 있습니다.

X = (ATA)-1AT * B
  = ((2 x n) * (n x 2))-1 * (2 x n) * (n x 1)
  = (2 x 2)-1 * (2 x 1)
  = (2 x 2) * (2 x 1)
  = (2 x 1)

즉, X 행렬은 (당연히 1차 함수의 매개변수 2개를 구하는 것이므로) 언제나 "2 x 1" 행렬이 나오므로 X 행렬의 인덱스에 해당하는 값을 정리해 볼 수도 있습니다. 이 과정을 단계별로 천천히 ^^ 접근해 볼까요?





2 x 2 행렬의 역행렬은 다음과 같이 간략화할 수 있으므로,



ATA 결과의 역행렬을 구할 수 있습니다.



위의 결과를 2 x n 행렬의 AT와 연산을 하면 과정이 좀 복잡하니 어차피 행렬곱은 결합법칙이 성립하므로 뒤의 AT B 연산을 먼저 다음과 같이 정리할 수 있습니다.



마지막으로 (ATA)-1(2 x 2 행렬)에 AT * B(2 x 1 행렬)을 곱하는 것이므로 다음과 같이 최종 정리가 됩니다.



따라서 1차 방정식의 매개변수는 이렇게 단일 식으로 각각 구할 수 있습니다.






구하는 과정에 정리할 식이 좀 끼어들어서 그렇지, 사실 C# 코드로 위의 계산을 나타내면 별거 아닙니다. ^^

// 단순 for 루프를 이용한 계산
private static (double theta1, double theta0) GetEquation2(double[] xData, double[] yData)
{
    double sumAnBn = 0.0;
    double sumAn = 0.0;
    double sumBn = 0.0;
    double sumAnAn = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        sumAnBn += xData[i] * yData[i];
        sumAn += xData[i];
        sumBn += yData[i];
        sumAnAn += xData[i] * xData[i];
    }

    int n = xData.Length;
    double Q = sumAnAn * n - sumAn * sumAn;

    double theta1 = (n * sumAnBn - sumAn * sumBn) / Q;
    double theta0 = (-sumAn * sumAnBn + sumAnAn * sumBn) / Q;

    return (theta1, theta0);
}

// 행렬을 이용한 계산
private static (double theta1, double theta0) GetEquation(double[] xData, double[] yData)
{
    Matrix matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector add1 = Vector.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    Matrix matAwith1 = matA.InsertColumn(1, add1);

    Console.WriteLine(matAwith1);
    Matrix matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix pinvMatA = matAwith1.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix matX = pinvMatA * matB;

    return (matX[0, 0], matX[1, 0]);
}

당연하겠지만 행렬식을 이용했던 GetEquation 메서드와 비교해 보면,

{
    // y = theta0 + (theta1 * x)
    (double theta1, double theta0) = GetEquation(xData, yData);
    Console.WriteLine($"[method1] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method1] y = 231.545758451005 + 1.39551018043075 * x
    */
}

{
    (double theta1, double theta0) = GetEquation2(xData, yData);
    Console.WriteLine($"[method2] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method2] y = 231.545758451006 + 1.39551018043075 * x
    */
}

부동소수점 계산임을 감안해 값이 거의 동일하다는 것을 알 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]





[최초 등록일: ]
[최종 수정일: 5/28/2019 ]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer@outlook.com

비밀번호

댓글 쓴 사람
 



2019-05-28 10시35분
선형 최소 제곱법(Linear Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5579
정성태

1  2  3  4  5  6  [7]  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
12180정성태3/10/2020380오류 유형: 600. "Docker Desktop for Windows" - EXPOSE 포트가 LISTENING 되지 않는 문제
12179정성태3/10/2020551개발 환경 구성: 481. docker - PostgreSQL 컨테이너 실행
12178정성태3/10/2020438개발 환경 구성: 480. Linux 운영체제의 docker를 위한 tcp 바인딩 추가
12177정성태3/9/2020516개발 환경 구성: 479. docker - MySQL 컨테이너 실행
12176정성태3/9/2020372개발 환경 구성: 478. 파일의 (sha256 등의) 해시 값(checksum) 확인하는 방법
12175정성태3/8/2020572개발 환경 구성: 477. "Docker Desktop for Windows"의 "Linux Container" 모드를 위한 tcp 바인딩 추가
12174정성태3/8/2020716개발 환경 구성: 476. DockerDesktopVM의 파일 시스템 접근 [2]
12173정성태3/8/2020661개발 환경 구성: 475. docker - SQL Server 2019 컨테이너 실행 [1]
12172정성태3/8/20201007개발 환경 구성: 474. docker - container에서 root 권한 명령어 실행(sudo)
12171정성태3/6/2020652VS.NET IDE: 143. Visual Studio - ASP.NET Core Web Application의 "Enable Docker Support" 옵션으로 달라지는 점
12170정성태3/6/2020542오류 유형: 599. "Docker Desktop is switching..." 메시지와 DockerDesktopVM CPU 소비 현상
12169정성태3/5/2020931개발 환경 구성: 473. Windows nanoserver에 대한 docker pull의 태그 사용
12168정성태3/8/2020824개발 환경 구성: 472. 윈도우 환경에서의 dockerd.exe("Docker Engine" 서비스)가 Linux의 것과 다른 점
12167정성태3/5/2020644개발 환경 구성: 471. C# - 닷넷 응용 프로그램에서 DB2 Express-C 데이터베이스 사용 (3) - ibmcom/db2express-c 컨테이너 사용
12166정성태3/14/2020518개발 환경 구성: 470. Windows Server 컨테이너 - DockerMsftProvider 모듈을 이용한 docker 설치
12165정성태8/18/2020530.NET Framework: 900. 실행 시에 메서드 가로채기 - CLR Injection: Runtime Method Replacer 개선 - 네 번째 이야기(Monitor.Enter 후킹)파일 다운로드1
12164정성태2/29/2020620오류 유형: 598. Surface Pro 6 - Windows Hello Face Software Device가 인식이 안 되는 문제
12163정성태2/27/2020569.NET Framework: 899. 익명 함수를 가리키는 delegate 필드에 대한 직렬화 문제
12162정성태2/28/2020716디버깅 기술: 166. C#에서 만든 COM 객체를 C/C++로 P/Invoke Interop 시 메모리 누수(Memory Leak) 발생파일 다운로드2
12161정성태2/26/2020367오류 유형: 597. manifest - The value "x64" of attribute "processorArchitecture" in element "assemblyIdentity" is invalid.
12160정성태2/26/2020438개발 환경 구성: 469. Reg-free COM 개체 사용을 위한 manifest 파일 생성 도구 - COMRegFreeManifest
12159정성태2/26/2020337오류 유형: 596. Visual Studio - The project needs to include ATL support
12158정성태2/26/2020514디버깅 기술: 165. C# - Marshal.GetIUnknownForObject/GetIDispatchForObject 사용 시 메모리 누수(Memory Leak) 발생파일 다운로드1
12157정성태2/27/2020516디버깅 기술: 164. C# - Marshal.GetNativeVariantForObject 사용 시 메모리 누수(Memory Leak) 발생 및 해결 방법파일 다운로드1
12156정성태2/25/2020387오류 유형: 595. LINK : warning LNK4098: defaultlib 'nafxcw.lib' conflicts with use of other libs; use /NODEFAULTLIB:library
12155정성태2/25/2020425오류 유형: 594. Warning NU1701 - This package may not be fully compatible with your project
1  2  3  4  5  6  [7]  8  9  10  11  12  13  14  15  ...