Microsoft MVP성태의 닷넷 이야기
글쓴 사람
홈페이지
첨부 파일

C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최대 값 구하기

예전에 미분을 이용한,

그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

방정식의 근사해를 알아본 적이 있는데요. 도함수의 다음과 같은 특성을 이용하면,

f' < 0: 최솟값은 우측에.
f' = 0: 최솟값
f' > 0: 최솟값은 좌측에.

최솟값을 (그 반대로는 최댓값을) 근사할 수 있습니다. 예를 들어, f(x) = x^2 - 2x + 1이라는 방정식이 있다면,

gradient_descent_1.png

이것의 도함수는 f'(x) = 2x - 2가 되고, (무작위로 선정한) x = 10으로 시작하는 경우 최솟값을 다음과 같이 이동하면서 근사할 수 있습니다.

f'(10) = 18 > 0: 최솟값은 좌측에 있으므로 다음번 x는 좀 더 작게 시도.
f'( 9) = 16 > 0:  "
f'( 8) = 14 > 0:  "
...            :  "
f'( 1) =  0 = 0:  최솟값

물론 위의 경우에는 1씩 줄여나가다 운이 좋아 정확히 최솟값 위치에 왔지만 단순하지 않은 상황에서는 근삿값에 대한 범위를 마련하고 그것을 만족하는 수준이거나, 아니면 근삿값으로 진행하는 과정 중에 원하는 수준만큼의 변화가 없다면 중단하는 식으로 작성하면 됩니다.

코드로 만들어 보면,

using MathNet.Numerics.Random;
using PLplot;
using System;
using System.Linq;

namespace ConsoleApp2
{
    class Program
    {
        static void Main(string[] args)
        {
            Func<double, double> f = (x) => (x - 1) * (x - 1);
            Func<double, double> df = (x) => 2 * x - 2;

            // 그래프 출력
            DrawPlotChart(-14, 14, -10, 120, f, df);
        }

        private static void DrawPlotChart(double xMin, double xMax, double yMin, double yMax, 
            Func<double, double> orgDrawFunc, Func<double, double> dfDrawFunc)
        {
            string chartFileName = "click.svg";

            using (var pl = new PLStream())
            {
                pl.sdev("svg");
                pl.sfnam(chartFileName);
                pl.spal0("cmap0_alternate.pal");
                pl.init();

                pl.env(xMin, xMax, yMin, yMax, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes);
                pl.lab("X", "Y", "y = x^2 - 2x + 1");

                pl.spal0("");
                pl.col0(PLplot.Color.Blue);

                // y = x ^ 2 - 2x + 1 그래프를 그리고,
                {
                    double[] ptX = Utils.RangeInclusive(xMin, xMax, 0.01).ToArray();
                    double[] ptY = null;

                    ptY = new double[ptX.Length];
                    for (int i = 0; i < ptX.Length; i++)
                    {
                        ptY[i] = orgDrawFunc(ptX[i]);
                    }

                    pl.line(ptX, ptY);
                }

                char code = Symbol.Bullet;
                pl.col0(PLplot.Color.Blue);

                // x = 15에서 시작해 도함수의 결과에 따라 0.1씩 변위를 주며 최솟값으로 이동하는 과정을 점으로 출력
                int maxTrial = 1000;
                double anyX = 15.0; // 랜덤 값

                while (maxTrial-- > 0)
                {
                    double yPos = dfDrawFunc(anyX);
                    pl.Point(anyX, orgDrawFunc(anyX), code);

                    if (yPos.GetCloseToZeroSlope())
                    {
                        break;
                    }
                    else anyX += (yPos > 0) ? -0.1 : 0.1;
                }

                pl.eop();
                pl.gver(out var verText);
            }
        }
    }

    public static class Utils
    {
        public static IEnumerable<T> RangeInclusive<T>(T start, T stop, T step)
        {
            dynamic dStart = start;
            dynamic dStop = stop;
            dynamic dStep = step;

            if (dStep == 0)
                throw new ArgumentException("Parameter step cannot equal zero.");

            if (dStart < dStop && dStep > 0)
            {
                for (var i = dStart; i <= dStop; i += dStep)
                {
                    yield return i;
                }
            }
            else if (dStart > dStop && dStep < 0)
            {
                for (var i = dStart; i >= dStop; i += dStep)
                {
                    yield return i;
                }
            }
        }

        public static void Point(this PLStream pl, double x, double y, char code)
        {
            pl.poin(new double[] { x }, new double[] { y }, code);
        }

        public static bool GetCloseToZeroSlope(this double value)
        {
            return Math.Abs(value) < 1e-03 ? true : false;
        }
    }
}

다음과 같은 출력을 얻을 수 있습니다.

gradient_descent_2.png

보는 바와 같이 최솟값으로 잘 수렴하고 있죠! ^^




"그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#" 글을 보면, 도함수로 접근하면서 처음에는 크게 이동하다가 점차 간격이 작아지게 되는데 마찬가지로 경사 하강법도 단순하게 x의 값을 일정 수로 줄여나가기 보다 다음과 같은 식으로 이전 x 값 기준으로 줄여나가는 방식이 있습니다.

x := x - f'(x)

하지만, 단순히 위와 같이 하면 f'(x)의 반환값이 크기 때문에 x 값의 부호를 반대로 만들어 근삿값을 진동하는 식으로 접근하게 됩니다. 이런 문제를 해결하기 위해 약간의 조정값을 f'(x)에 곱해주면,

x := x - n * f'(x) // n == 학습 비율(learning rate)
                   // 예를 들어 n = 0.1

즉, 이전 코드를 다음과 같이 개선한 후,

anyX = 15.0;
double t = 0.1;

while (maxTrial-- > 0)
{
    double yPos = dfDrawFunc(anyX);
    pl.Point(anyX, orgDrawFunc(anyX), code);

    if (yPos.GetCloseToZeroSlope())
    {
        break;
    }
    else anyX -= (t * yPos);
}

결과를 보면, 훨씬 빨리 최솟값으로 수렴하는 것을 확인할 수 있습니다.

gradient_descent_3.png

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




수렴을 좀 더 빨리하기 위해, 데이터에 대한 전처리를 수행하는 과정이 바로 정규화입니다. 예를 들어 이전 글을 보면,

ML.NET 데이터 정규화
; https://www.sysnet.pe.kr/2/0/11922

click.csv 파일의 x 값 범위가 25 ~ 272에 해당하는데 이것을 z-score 정규화를 거치면 -1.7406785589738 ~ 1.94669368859505가 되어 수렴을 시작할 수 있는 랜덤 값 범위를 대폭 줄이게 됩니다.

참고로, 직관적으로 아시겠지만 ^^ 경사 하강법은,

경사 하강법
; https://ko.wikipedia.org/wiki/%EA%B2%BD%EC%82%AC_%ED%95%98%EA%B0%95%EB%B2%95

지역 근사해는 찾아도, 전역 근사해를 찾지 못할 수 있습니다. 아래의 그래프와 같은 상황들을 보면 이해가 되실 것입니다. ^^

gradient_descent_4.png

gradient_descent_5.png

이에 대한 보완으로 "확률 경사 하강법"과 "미니 배치법"이 있다고 하니 좀 더 자세한 사항은 "기초 수학으로 이해하는 머신러닝 알고리즘" 책을 보시면 되겠습니다. ^^




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]





[최초 등록일: ]
[최종 수정일: 5/31/2019 ]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer@outlook.com

비밀번호

댓글 쓴 사람
 




1  2  3  4  5  6  [7]  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
12115정성태1/14/2020444디버깅 기술: 157. C# - PEB.ProcessHeap을 이용해 디버깅 중인지 확인하는 방법파일 다운로드1
12114정성태1/13/2020635디버깅 기술: 156. C# - PDB 파일로부터 심벌(Symbol) 및 타입(Type) 정보 열거 [1]파일 다운로드3
12113정성태1/12/2020886오류 유형: 590. Visual C++ 빌드 오류 - fatal error LNK1104: cannot open file 'atls.lib' [1]
12112정성태1/12/2020381오류 유형: 589. PowerShell - 원격 Invoke-Command 실행 시 "WinRM cannot complete the operation" 오류 발생
12111정성태3/23/2020907디버깅 기술: 155. C# - KernelMemoryIO 드라이버를 이용해 실행 프로그램을 숨기는 방법(DKOM: Direct Kernel Object Modification) [1]
12110정성태6/23/2020601디버깅 기술: 154. Patch Guard로 인해 블루 스크린(BSOD)가 발생하는 사례파일 다운로드1
12109정성태1/10/2020494오류 유형: 588. Driver 프로젝트 빌드 오류 - Inf2Cat error -2: "Inf2Cat, signability test failed."
12108정성태1/10/2020400오류 유형: 587. Kernel Driver 시작 시 127(The specified procedure could not be found.) 오류 메시지 발생
12107정성태1/10/2020508.NET Framework: 877. C# - 프로세스의 모든 핸들을 열람 - 두 번째 이야기
12106정성태1/8/2020562VC++: 136. C++ - OSR Driver Loader와 같은 Legacy 커널 드라이버 설치 프로그램 제작 [1]
12105정성태1/8/2020443디버깅 기술: 153. C# - PEB를 조작해 로드된 DLL을 숨기는 방법
12104정성태1/9/2020763DDK: 9. 커널 메모리를 읽고 쓰는 NT Legacy driver와 C# 클라이언트 프로그램 [3]
12103정성태4/23/20201367DDK: 8. Visual Studio 2019 + WDK Legacy Driver 제작- Hello World 예제 [1]파일 다운로드2
12102정성태1/6/2020550디버깅 기술: 152. User 권한(Ring 3)의 프로그램에서 _ETHREAD 주소(및 커널 메모리를 읽을 수 있다면 _EPROCESS 주소) 구하는 방법
12101정성태1/8/2020553.NET Framework: 876. C# - PEB(Process Environment Block)를 통해 로드된 모듈 목록 열람
12100정성태1/3/2020395.NET Framework: 875. .NET 3.5 이하에서 IntPtr.Add 사용
12099정성태1/3/2020544디버깅 기술: 151. Windows 10 - Process Explorer로 확인한 Handle 정보를 windbg에서 조회
12098정성태1/2/2020525.NET Framework: 874. C# - 커널 구조체의 Offset 값을 하드 코딩하지 않고 사용하는 방법
12097정성태1/2/2020409디버깅 기술: 150. windbg - Wow64, x86, x64에서의 커널 구조체(예: TEB) 구조체 확인
12096정성태1/2/2020582디버깅 기술: 149. C# - DbgEng.dll을 이용한 간단한 디버거 제작
12095정성태12/27/2019673VC++: 135. C++ - string_view의 동작 방식
12094정성태12/26/2019580.NET Framework: 873. C# - 코드를 통해 PDB 심벌 파일 다운로드 방법
12093정성태12/26/2019735.NET Framework: 872. C# - 로딩된 Native DLL의 export 함수 목록 출력파일 다운로드1
12092정성태12/25/2019615디버깅 기술: 148. cdb.exe를 이용해 (ntdll.dll 등에 정의된) 커널 구조체 출력하는 방법
12091정성태12/25/2019812디버깅 기술: 147. pdb 파일을 다운로드하기 위한 symchk.exe 실행에 필요한 최소 파일
12090정성태12/24/2019579.NET Framework: 871. .NET AnyCPU로 빌드된 PE 헤더의 로딩 전/후 차이점
1  2  3  4  5  6  [7]  8  9  10  11  12  13  14  15  ...