Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)

GeoGebra 기하 (11) - 3대 작도 불능 문제의 하나인 임의 각의 3등분

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

컴퍼스와 자를 이용한 작도를 실습할 수 있습니다. 이미 증명된 바에 의해, 임의 각의 3등분은 불가능합니다. 찬찬히 지난 글을 한번 읽어 보면,

GeoGebra 기하 (7) - 각의 이등분
; https://www.sysnet.pe.kr/2/0/11577

GeoGebra 기하 (8) - 호(Arc)의 이등분
; https://www.sysnet.pe.kr/2/0/11578

결국 "각의 3등분"이란, "호의 3등분"을 할 수 있다면 "각의 3등분"도 할 수 있는 것입니다. 그렇다고 모든 각에 대한 3등분을 할 수 없는 것은 아닙니다. 그나마 해당 각이 알려져 있다면 지난 글에서처럼,

GeoGebra 기하 (10) - 직각의 3등분
; https://www.sysnet.pe.kr/2/0/11580

작도 가능한 도형들 중에서 뽑아낼 수 있는 각도를 이용해 3등분 하는 것이 가능합니다. 예를 들어, 정삼각형으로 만든 60도는 절반씩 나누다 보면 30, 15, 7.5, 3.75, 1.875 등의 각도를 작도할 수 있고 따라서 그것들의 3배 각들은 3등분이 가능합니다. 이런 식으로 정사각형의 90도에서 45, 22.5, 11.25, 5.625, 2.8125, 1.40625 등의 각도와 정오각형을 작도한다면 108도에서 54, 27, 13.5, 6.75, 3.375, 1.6875 등의 각도를 3등분 작도에 사용할 수 있습니다. 게다가 정오각형의 54도와 정사각형의 11.25도를 빼면 42.75도를 작도하는 것도 가능하니 이런 식으로 하다 보면 알려진 각에 대해서는 꽤나 많이 3등분 할 수 있는 조합이 나옵니다.

문제는, 그냥 다음과 같이 임의로 주어진 각입니다.

trisector_1.png

이것은 말 그대로 "호의 3등분"을 할 수 있어야만 합니다.




선형 보간법을 한다면, 그나마 다음과 같은 정도로 근삿값을 구할 수 있습니다.

trisector_2.png

혹은 아래의 책에서 소개하고 있는,

수학이란 무엇인가
; http://www.yes24.com/24/goods/274701?scode=032

"자의 다른 기능을 허용한다면 작도 가능한 것은 엄청나게 확장될 수 있다"고 하면서 아르키메데스의 저술에서 발견된 각의 삼등분 작도 방법이 있습니다.

trisector_3.png

위의 그림은, 각 EAC에 대한 3등분을 하는 것으로 선분 DA와 동일한 길이의 점을 선분 AC의 연장선 위에 (F의 위치를 잡아) "찍는" 것입니다. 이게 왜 3등분인지 증명은 다음과 같이 보조 선을 그어 보면 확실히 알 수 있습니다.

trisector_4.png

이를 기반으로 다음과 같은 증명을 할 수 있습니다.

새롭게 "교점을 맞춰 찍은" 점 F를 기반으로 각 DFG를 x로 둡니다. DFG가 x각이므로 DAG도 x각임.

그럼 각 HDA는 2x가 됩니다. (현 HA에 대한 중심각 HDA는 원주각 HFA의 2배이기 때문임)

각 HDA == 각 HEA이므로, 따라서 각 EAD에 대해 다음의 공식이 성립합니다.
각 EAD = 삼각형 내각의 합 180 - (각 HDA + 각 HEA)
각 EAD = 180 - (2x + 2x)
       = 180 - 4x

선분 CAG는 일직선으로 180도이므로 이제 알려진 각들을 이용해 정리하면,
180 = 각 DAG + 각 EAD + 각 EAC
    = x + (180 - 4x) + 각 EAC
    = x + 180 - 4x + 각 EAC
    = -3x + 180 + 각 EAC

0   = -3x + 각 EAC
3x = 각 EAC
x = 각 EAC / 3

그런데, 왜 이것이 자의 다른 용도를 활용한 것인지는 실제로 작도를 해보면 압니다. 아래에서 보는 바와 같이, 교점 F를 잡는 것이 정확한 작도에 의한 것이 아닌, 선분 DA의 동일한 길이를 얻기 위해 다음과 같이 "찍어야"하기 때문입니다.

trisector_5.gif

다시 말해, 위의 경우는 "자"가 "주어진 두 점을 지나는 직선"을 긋는 도구로써 사용된 것이 아니라는 것입니다.

혹시 그래도 3등분 할 수 있는 일반적인 방법이 있지 않을까 하고 고민하시는 분들은 "수학이란 무엇인가"의 책에서 위의 3등분이 불가능함을 대수 방정식을 이용해 풀어 놓은 것을 참고하시면 ... 포기하게 되실 겁니다. ^^




재미있는 것은, 이것이 가능하다고 국내에서 책까지 판매된 적이 있습니다.

각의 3등분의 정리 - 2425년만에 밝혀진 수학의 신비 (양장)
; http://www.yes24.com/24/goods/26904007

게다가 이 책을 ^^; 소개하고 있기까지 한 글도 있습니다.

각의 3등분의 정리
; http://egloos.zum.com/igenbin/v/2693745

저 글의 덧글에 보면, 해당 책의 저자가 남긴 글이 있고 그 안의 링크를 타고 들어가면 3등분에 대한 내용을 알 수 있습니다.

새로 발견한 임의각의 3등분법
; https://blog.naver.com/mgeo67/40018980301

저 글의 "그림 1"을 보자마자 알 수 있는 것은 도대체 원호 AY의 3등분 지점인 점 S를 어떻게 찍었냐는 것입니다. 그러니까, 저 그림에서는 미리부터 그 위치를 알고 찍은 걸 이용해 증명을 하고 있는 것입니다. 사실, 원호 AY의 3등분 지점인 점 S를 찍을 수 있는 "실력"이면 어렵게 거기를 찍을 것이 아니라 원호 XY의 3등분인 점 B나 점 C를 찍으면 됩니다.

좀 더 읽어보면, 글쓴이가 주장하는 것은 원의 중심 O와 점 S, 점 B가 정삼각형을 이룬다는 나름의 발견으로 그걸 이용하면 S와 B를 찍을 수 있을 것처럼 생각하는 것 같기도 합니다. 실제로 다음과 같이 쓰여 있습니다.

"
그리고 위의 그림1에서 △ BOS가 정삼각형(Regular triangle)이라는 것은 유클리드 도구로 무수히 많은 각을 3등분 할 수 있게 하는 관건이 된다.
"


그런데 이것을 GeoGebra로 실제로 재현해 볼까요? 아래와 같이 정삼각형을 그릴 수는 있지만,

trisector_6.gif

보는 바와 같이 도대체 어느 지점에서 멈춰야 원호를 3등분 할 수 있는지 알 수가 없습니다. 그냥 봐도, 말 그대로 찍기 수준일 뿐 오히려 이런 정도가 3등분에 대한 정리라면 이전에 살펴본 아르키메데스의 방법이 더 정답에 가깝습니다.

(첨부 파일은 이 글에서 소개한 3개의 ggb 작도 파일을 담고 있습니다.)




Basic Tools
    Move
    Point
    Segment
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Regular Polygon




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/5/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 91  92  93  94  95  96  97  98  99  100  101  102  103  104  [105]  ...
NoWriterDateCnt.TitleFile(s)
11331정성태10/16/201718743디버깅 기술: 103. windbg - .NET 4.0 이상의 환경에서 모든 DLL에 대한 심벌 파일을 로드하는 파이썬 스크립트
11330정성태10/16/201717873디버깅 기술: 102. windbg - .NET 4.0 이상의 환경에서 DLL의 심벌 파일 로드 방법 [1]
11329정성태10/15/201722630.NET Framework: 693. C# - 오피스 엑셀 97-2003 .xls 파일에 대해 32비트/64비트 상관없이 접근 방법파일 다운로드1
11328정성태10/15/201725622.NET Framework: 692. C# - 하나의 바이너리로 환경에 맞게 32비트/64비트 EXE를 실행하는 방법파일 다운로드1
11327정성태10/15/201719401.NET Framework: 691. AssemblyName을 .csproj에서 바꾼 경우 빌드 오류 발생하는 문제파일 다운로드1
11326정성태10/15/201719470.NET Framework: 690. coreclr 소스코드로 알아보는 .NET 4.0의 모듈 로딩 함수 [1]
11325정성태10/14/201720213.NET Framework: 689. CLR 4.0 환경에서 DLL 모듈의 로드 주소(Base address) 알아내는 방법
11324정성태10/13/201721701디버깅 기술: 101. windbg - "*** WARNING: Unable to verify checksum for" 경고 없애는 방법
11322정성태10/13/201719740디버깅 기술: 100. windbg - .NET 4.0 응용 프로그램의 Main 메서드에 Breakpoint 걸기
11321정성태10/11/201721181.NET Framework: 688. NGen 모듈과 .NET Profiler
11320정성태10/11/201722026.NET Framework: 687. COR_PRF_USE_PROFILE_IMAGES 옵션과 NGen의 "profiler-enhanced images" [1]
11319정성태10/11/201729714.NET Framework: 686. C# - string 배열을 담은 구조체를 직렬화하는 방법
11318정성태10/7/201721912VS.NET IDE: 122. 비주얼 스튜디오에서 관리자 권한을 요구하는 C# 콘솔 프로그램 제작 [1]
11317정성태10/4/201727418VC++: 120. std::copy 등의 함수 사용 시 _SCL_SECURE_NO_WARNINGS 에러 발생
11316정성태9/30/201724869디버깅 기술: 99. (닷넷) 프로세스(EXE)에 디버거가 연결되어 있는지 아는 방법 [4]
11315정성태9/29/201741350기타: 68. "시작하세요! C# 6.0 프로그래밍: 기본 문법부터 실전 예제까지" 구매하신 분들을 위한 C# 7.0/7.1 추가 문법 PDF [8]
11314정성태9/28/201723075디버깅 기술: 98. windbg - 덤프 파일로부터 닷넷 버전 확인하는 방법
11313정성태9/25/201720715디버깅 기술: 97. windbg - 메모리 덤프로부터 DateTime 형식의 값을 알아내는 방법파일 다운로드1
11312정성태9/25/201723986.NET Framework: 685. C# - 구조체(값 형식)의 필드를 리플렉션을 이용해 값을 바꾸는 방법파일 다운로드1
11311정성태9/20/201717395.NET Framework: 684. System.Diagnostics.Process 객체의 명시적인 해제 권장
11310정성태9/19/201721866.NET Framework: 683. WPF의 Window 객체를 생성했는데 GC 수집 대상이 안 되는 이유 [3]
11309정성태9/13/201719238개발 환경 구성: 335. Octave의 명령 창에서 실행한 결과를 복사하는 방법
11308정성태9/13/201720933VS.NET IDE: 121. 비주얼 스튜디오에서 일부 텍스트 파일을 무조건 메모장으로만 여는 문제파일 다운로드1
11307정성태9/13/201723391오류 유형: 421. System.Runtime.InteropServices.SEHException - 0x80004005
11306정성태9/12/201721520.NET Framework: 682. 아웃룩 사용자를 위한 중국어 스팸 필터 Add-in
11305정성태9/12/201723022개발 환경 구성: 334. 기존 프로젝트를 Visual Studio를 이용해 Github의 신규 생성된 repo에 올리는 방법 [1]
... 91  92  93  94  95  96  97  98  99  100  101  102  103  104  [105]  ...