Microsoft MVP성태의 닷넷 이야기
Math: 41. GeoGebra 기하 (18) - 원의 중심 및 접선 [링크 복사], [링크+제목 복사],
조회: 19715
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 3개 있습니다.)

GeoGebra 기하 (18) - 원의 중심 및 접선

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

이번엔 원의 중심을 결정하고 접선도 그어 보겠습니다. 우선, 중심의 경우 지난 글에서 이미 답이 나왔습니다.

GeoGebra 기하 (8) - 호(Arc)의 이등분
; https://www.sysnet.pe.kr/2/0/11578

즉 아무 원호나 2개 그어,

circle_tangent_line_1.png

그것의 수직 이등분선(Perpendicular Bisector)이 만나는 점이 원의 중심입니다.

circle_tangent_line_2.png

자, 그렇게 해서 점의 중심을 정했으면 이제 원 위에 있는 임의의 점에 대한 접선을 구하는 것이 가능합니다. 접선은,

circle_tangent_line_3.png

점 K와 원의 중심 A를 이은 선과 수직이기 때문에 선분 AK에 대해 점 K에서 Perpendicular Line을 이용해 수직선을 그어주면 됩니다.

circle_tangent_line_4.png

여기서 약간의 방정식을 정리해 보면, 점 A가 (0,0) 좌표에 있고 반지름이 3인 원의 방정식은 다음과 같습니다.

(x - x0)2 + (y - y0)2 = d2 (d == 반지름)

x0 = 0
y0 = 0
d = 3

x2 + y2 = 32

일반화 시켜 점 (x1, y1)이라고 하면,

x12 + y12 =  d2

그리고 직선 AK의 방정식은 점 K(x1, y1)를 지나므로,

y = (y1 / x1) * x

이때의 접선의 기울기는 다음과 같이 구할 수 있습니다.

m = 직선 AK의 기울기
m = (y1 / x1)

m' = 점 K에서의 접선의 기울기
m * m' = -1 (수직이므로 기울기를 곱한 경우 -1)

m' = -(x1 / y1)

따라서 해당 기울기를 가진 접선의 방정식은,

y = -(x1 / y1)(x - x1) + y1

와 같습니다. 실제로 "Steps"에 나온 점 K의 위치를 이용해 직선의 방정식을 구해 볼까요? ^^

circle_tangent_line_5.png

위와 같이 "Steps"를 통해서 보면 점 K의 위치가 (2.5, 1.6)임을 알 수 있습니다. 따라서 이것을 방정식에 대입해 보면,

x1 = 2.5
y1 = 1.6

y = -(2.5 / 1.6)(x - 2.5) + 1.6
  = -1.5625(x - 2.5) + 1.6
  = -1.5625x + 3.90625 + 1.6
  = -1.5625x + 5.50625

와 같이 구할 수 있고, 이것을 역시 "Steps"에 나온 접선의 방정식과 비교해 보면,

circle_tangent_line_6.png

-9 = -2.5x - 1.6y
9 = 2.5x + 1.6y
1.6y = -2.5x + 9
y = -(2.5 / 1.6)x + (9 / 1.6)
  = -1.5625x + 5.625

와 같이 나옵니다. y 절편에서 0.11875 정도의 오차가 있는데요, 이것은 지오지브라가 보여준 K의 좌표 (2.5, 1.6)에 소수점 2자리 이하의 값을 보여주지 않기 때문에 정확한 좌표 값에 의한 것이 아니므로 발생합니다.

참고로, 지오지브라에서 보여준 접선의 방정식은 이렇게도 구할 수 있습니다.

y = -(x1 / y1)(x - x1) + y1 (접선의 방정식)
yy1 = -(x1)(x - x1) + y12 (양변에 y1을 곱)
    = -x1x + x12 + y12

x1x + yy1 = x12 + y12

x1x + y1y = d2

점 K == (2.5, 1.6)이므로,
2.5x + 1.6y = 32

그러니까, 원점 (0,0)을 기준으로 한 원이 있을 때, 점의 좌표만 알면 그것의 x1, y1값과 반지름을 그대로 "x1x + y1y = d2" 공식에 넣고 y에 대해서 정리해 주면 접선의 방정식이 구해지는 것입니다.




마지막으로, 원 위에 있는 점이 아닌, 원 바깥에 있는 점을 지나는 접선을 작도해 보겠습니다.

circle_tangent_line_7.png

간단하게, 원의 중심 A와 점 C를 잇는 선분의 이등분(Midpoint or Center) 위치에서 원을 그려 생기는 2개의 교점을 선(Line)으로 연결하면 됩니다.

circle_tangent_line_8.png

왜 그런지는 원주각 정리를 떠올리면 됩니다.

circle_tangent_line_9.png

선분 AC를 지름으로 한 원이므로 중심각은 180도이고, 2개의 교점(E, F)과 이룬 각 CEA와 각 CFA는 원주각이므로 1/2이 되어 90도가 됩니다. 따라서, 점 A를 중심으로 한 원의 입장에서 보면 해당 교점들과 연결한 선은 90도를 이루므로 접선이 되는 것입니다.

(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/9/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... [196]  197 
NoWriterDateCnt.TitleFile(s)
40정성태7/23/200321910COM 개체 관련: 10. IE BHO 개체를 개발할 때, 인터넷 익스플로러가 아닌 탐색기에서 활성화 되는 문제 해결 [1]
41김성현7/24/200320747    답변글 COM 개체 관련: 10.1. [답변]: IE BHO 개체를 개발할 때, 인터넷 익스플로러가 아닌 탐색기에서 활성화 되는 문제 해결
42정성태7/29/200318691        답변글 COM 개체 관련: 10.2. feedback 을 받기 위해서 답변 기능을 가능하게 해두었습니다.
39정성태7/17/200324452VS.NET IDE: 5. 원격 제어 3가지 방법
38정성태7/17/200320993.NET Framework: 8. IIS 서버 재설치와 ASP.NET 서비스의 문제점
36정성태7/17/200321660.NET Framework: 7. 시행착오 - WebService 참조 추가 오류
35정성태7/17/200322212.NET Framework: 6. Win2000에서의 .NET COM+ 자동 등록 오류 발생 해결
34정성태7/17/200320891VS.NET IDE: 4. VC++ 원격 디버깅파일 다운로드1
33정성태7/17/200321044VS.NET IDE: 3. Win2000 NAT 서비스
32정성태7/17/200322261COM 개체 관련: 9. _bstr_t, CComBSTR, string 클래스 사용 [1]
31정성태7/17/200319311COM 개체 관련: 8. IDL 구문에서 구조체를 pack 하는 방법
30정성태7/17/200336567VC++: 7. [STL] vector 사용법 및 reference 사용예 [1]파일 다운로드1
28정성태7/17/200320971스크립트: 3. Programming Microsoft Internet Explorer 5 - CHM 파일
29정성태7/17/200320471    답변글 스크립트: 3.1. Programming Microsoft Internet Explorer 5 - 소스코드
27정성태7/17/200319425COM 개체 관련: 7. HTML Control에서 DELETE, 화살표 키 등이 안 먹는 문제
26정성태7/17/200320584COM 개체 관련: 6. WebBrowser 콘트롤에서 프레임을 구하는 소스
25정성태7/17/200318192COM 개체 관련: 5. C++ Attributes - Make COM Programming a Breeze with New Feature in Visual Studio .NET [2]파일 다운로드1
24정성태7/17/200321809.NET Framework: 5. (MHT 변환해서 가져온 글) .NET 의 COM+ 서비스 사용파일 다운로드1
23정성태7/17/200325499.NET Framework: 4. webservice.htc - HTML Script에서도 웹서비스 엑세스 [2]파일 다운로드1
22정성태7/17/200320052.NET Framework: 3. .NET Framework SDK 퀵 스타트 자습서
21정성태7/17/200319104.NET Framework: 2. 김현승님의 "ASP.NET & .NET EnterpriseServices & Remoting 코드 템플릿"
20정성태2/15/200526151VS.NET IDE: 2. Platform SDK 설치
19정성태7/17/200322108.NET Framework: 1. JScript.NET 강좌 사이트[영문]
18정성태7/17/200319499COM 개체 관련: 4. Exchanging Data Over the Internet Using XML [1]파일 다운로드1
17정성태7/17/200327440VC++: 6. Win32 API Hook - 소스는 "공개소스"에있습니다. [2]
16정성태7/17/200319767COM 개체 관련: 3. IE 툴밴드의 위치문제파일 다운로드1
... [196]  197