Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

GeoGebra 기하 (21) - 반전기하학의 직선 및 원에 관한 반사변환

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

반전기하학에 대한 작도를 알아보겠습니다.

반전기하학
; https://ko.wikipedia.org/wiki/%EB%B0%98%EC%A0%84%EA%B8%B0%ED%95%98%ED%95%99

우선 평면에서 한 점을 선에 대해 반사변환을 해보겠습니다.

reflect_line_1.png

사실 이것은 너무나 직관적으로, 해당 선에 대하 수직선을 긋고(Perpendicular Line) 그 교점을 중심으로 원을 그리면(Circle with Center through Point) 또 다른 점의 위치가 결정이 됩니다.

reflect_line_2.png




원에 대한 반사변환은 좀 특이합니다. 지난 글에서,

GeoGebra 기하 (18) - 원의 중심 및 접선
; https://www.sysnet.pe.kr/2/0/11594

(0,0) 원점을 중심으로 하는 원의 방정식을,

x12 + y12 =  r2 (r == 반지름)

그려 보면,

reflect_circle_1.png

피타고라스 정리에 의해 쉽게 그 이유가 나옵니다.

(선분 AF)2 + (선분 FC)2 = (선분 AC)2

선분 AF = x 축의 값
선분 FC = y 축의 값
선분 AC = 반지름 r

x12 + y12 =  r2

r2이 되는 또 다른 경우를 보겠습니다. 위의 그림에서 다음과 같이 선분 AC에 임의의 점을 하나 찍었습니다.

reflect_circle_2.png

점 H는 알고 있고 점 ?의 위치는 알 수 없는 상태입니다. 이때 다음과 같은 공식을 만족하는 점 ?의 위치가 있을 것입니다.

(선분 AH) * (선분 A?) = (선분 AC)2

예를 들어 점 H의 위치가 점 C와 같다면,

(선분 AH) * (선분 AH) = (선분 AC)2

결국 원 호를 이루는 모든 점이 될 것입니다. 그런데 점 H를 직선을 따라 안쪽으로 이동시켰을 경우, 즉 반지름 r보다 값이 작아진다면 점 ?의 위치는 r보다 커져야 할 것입니다. 바로 그 위치를 작도해 보는 것입니다.

방법은, 선분 AH에 수직 이등분선을 긋고(Perpendicular Bisector),

reflect_circle_3.png

그 선과 원 A와 만나는 교점을 J라고 했을 때, 이제 점 A와 그 교점 J를 현으로 하는 원을 구해야 합니다. 이를 위해 현의 중점으로부터 역시 수직 이등분선을 그으면,

reflect_circle_4.png

위와 같이 수직 이등분선과 선분 AC의 연장선 위에 만나는 교점 K가 결정되는데 바로 그 위치가 ?에 해당합니다. 그래서 결국 다음의 공식이 성립합니다.

(선분 AH) * (선분 AK) = r2

증명은 다음과 같이 정리(Show / Hide Object) 후 보조선을 그어 보면 모습을 드러냅니다.

reflect_circle_5.png

삼각형 AJH는 이등변 삼각형이고 삼각형 JKA 또한 이등변 삼각형입니다. 이로부터 삼각형 JKA의 각 KJA와 각 KAJ는 같기 때문에 두 개의 이등변 삼각형은 두 각이 같으므로 닮음 조건을 만족합니다. 따라서 밑변과 빗변의 비율이 같으므로 다음의 식이 성립합니다.

    (선분 AH) : (선분 AJ) = (선분 JA) : (선분 JK)
==> (선분 AJ) * (선분 JA) = (선분 AH) * (선분 JK)
==> r * r = (선분 AH) * (선분 JK)
==> r2 = (선분 AH) * (선분 AK)

물론 반대로도 위치를 잡을 수 있는데 이 과정은 위의 것과 반대로 하면 됩니다. 예를 들어, 점 K를 다음과 같이 원 밖에서 결정했을 때,

reflect_circle_6.png

점 K를 중심으로 선분 AK를 반지름으로 하는 원을 그리면 원 K와 원 A의 교점이 생기고,

reflect_circle_7.png

그 교점 J로부터 선분 AC에 수선의 발을 내리면(Perpendicular Line),

reflect_circle_8.png

점 I가 결정되므로 선분 IA를 반지름으로 하는 원을 그리면 점 H가 결정되는 것으로 완료됩니다.




자, 그럼 이제 간단하게 애니메이션 테스트를 할 수 있습니다. 점 H의 위치를 원 A의 반지름 내에서 이동해 주면 r2을 만족하기 위해 점 K의 위치가 그에 맞게 이동합니다.

reflect_circle_9.gif

이를 달리 말하면, 선분 AC의 구간이 (K가 아무리 멀어져도) 선분 CK의 구간과 일대일 대응 관계를 수립한다는 것입니다. 단지, 여기서 문제가 되는 것은 점 H가 원 A의 중심에 가까워져 그 길이가 0이 되면 점 K의 지점이 무한대로 멀어진다는 것인데, 점 A의 반전은 "무한원점"에 대응한다면서 여전히 일대일 대응 관계가 수립하는데 문제가 없다고 합니다.

(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/11/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 91  92  93  94  95  96  97  98  99  100  101  102  103  [104]  105  ...
NoWriterDateCnt.TitleFile(s)
11321정성태10/11/201719758.NET Framework: 688. NGen 모듈과 .NET Profiler
11320정성태10/11/201720530.NET Framework: 687. COR_PRF_USE_PROFILE_IMAGES 옵션과 NGen의 "profiler-enhanced images" [1]
11319정성태10/11/201728141.NET Framework: 686. C# - string 배열을 담은 구조체를 직렬화하는 방법
11318정성태10/7/201720899VS.NET IDE: 122. 비주얼 스튜디오에서 관리자 권한을 요구하는 C# 콘솔 프로그램 제작 [1]
11317정성태10/4/201726061VC++: 120. std::copy 등의 함수 사용 시 _SCL_SECURE_NO_WARNINGS 에러 발생
11316정성태9/30/201724109디버깅 기술: 99. (닷넷) 프로세스(EXE)에 디버거가 연결되어 있는지 아는 방법 [4]
11315정성태9/29/201740205기타: 68. "시작하세요! C# 6.0 프로그래밍: 기본 문법부터 실전 예제까지" 구매하신 분들을 위한 C# 7.0/7.1 추가 문법 PDF [8]
11314정성태9/28/201721947디버깅 기술: 98. windbg - 덤프 파일로부터 닷넷 버전 확인하는 방법
11313정성태9/25/201719271디버깅 기술: 97. windbg - 메모리 덤프로부터 DateTime 형식의 값을 알아내는 방법파일 다운로드1
11312정성태9/25/201722276.NET Framework: 685. C# - 구조체(값 형식)의 필드를 리플렉션을 이용해 값을 바꾸는 방법파일 다운로드1
11311정성태9/20/201716817.NET Framework: 684. System.Diagnostics.Process 객체의 명시적인 해제 권장
11310정성태9/19/201720225.NET Framework: 683. WPF의 Window 객체를 생성했는데 GC 수집 대상이 안 되는 이유 [3]
11309정성태9/13/201718352개발 환경 구성: 335. Octave의 명령 창에서 실행한 결과를 복사하는 방법
11308정성태9/13/201719388VS.NET IDE: 121. 비주얼 스튜디오에서 일부 텍스트 파일을 무조건 메모장으로만 여는 문제파일 다운로드1
11307정성태9/13/201721903오류 유형: 421. System.Runtime.InteropServices.SEHException - 0x80004005
11306정성태9/12/201719956.NET Framework: 682. 아웃룩 사용자를 위한 중국어 스팸 필터 Add-in
11305정성태9/12/201721472개발 환경 구성: 334. 기존 프로젝트를 Visual Studio를 이용해 Github의 신규 생성된 repo에 올리는 방법 [1]
11304정성태9/11/201718608개발 환경 구성: 333. 3ds Max를 Hyper-V VM에서 실행하는 방법
11303정성태9/11/201721899개발 환경 구성: 332. Inno Setup 파일의 관리자 권한을 제거하는 방법
11302정성태9/11/201718131개발 환경 구성: 331. SQL Server Express를 위한 방화벽 설정
11301정성태9/11/201717038오류 유형: 420. SQL Server Express 연결 오류 - A network-related or instance-specific error occurred while establishing a connection to SQL Server.
11300정성태9/10/201720837.NET Framework: 681. dotnet.exe - run, exec, build, restore, publish 차이점 [3]
11299정성태9/9/201719605개발 환경 구성: 330. Hyper-V VM의 Internal Network를 Private 유형으로 만드는 방법
11298정성태9/8/201722877VC++: 119. EnumProcesses / EnumProcessModules API 사용 시 주의점 [1]
11297정성태9/8/201719531디버깅 기술: 96. windbg - 풀 덤프에 포함된 모든 닷넷 모듈을 파일로 저장하는 방법
11296정성태9/8/201722742웹: 36. Edge - "이 웹 사이트는 이전 기술에서 실행되며 Internet Explorer에서만 작동합니다." 끄는 방법
... 91  92  93  94  95  96  97  98  99  100  101  102  103  [104]  105  ...