Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

GeoGebra 기하 (21) - 반전기하학의 직선 및 원에 관한 반사변환

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

반전기하학에 대한 작도를 알아보겠습니다.

반전기하학
; https://ko.wikipedia.org/wiki/%EB%B0%98%EC%A0%84%EA%B8%B0%ED%95%98%ED%95%99

우선 평면에서 한 점을 선에 대해 반사변환을 해보겠습니다.

reflect_line_1.png

사실 이것은 너무나 직관적으로, 해당 선에 대하 수직선을 긋고(Perpendicular Line) 그 교점을 중심으로 원을 그리면(Circle with Center through Point) 또 다른 점의 위치가 결정이 됩니다.

reflect_line_2.png




원에 대한 반사변환은 좀 특이합니다. 지난 글에서,

GeoGebra 기하 (18) - 원의 중심 및 접선
; https://www.sysnet.pe.kr/2/0/11594

(0,0) 원점을 중심으로 하는 원의 방정식을,

x12 + y12 =  r2 (r == 반지름)

그려 보면,

reflect_circle_1.png

피타고라스 정리에 의해 쉽게 그 이유가 나옵니다.

(선분 AF)2 + (선분 FC)2 = (선분 AC)2

선분 AF = x 축의 값
선분 FC = y 축의 값
선분 AC = 반지름 r

x12 + y12 =  r2

r2이 되는 또 다른 경우를 보겠습니다. 위의 그림에서 다음과 같이 선분 AC에 임의의 점을 하나 찍었습니다.

reflect_circle_2.png

점 H는 알고 있고 점 ?의 위치는 알 수 없는 상태입니다. 이때 다음과 같은 공식을 만족하는 점 ?의 위치가 있을 것입니다.

(선분 AH) * (선분 A?) = (선분 AC)2

예를 들어 점 H의 위치가 점 C와 같다면,

(선분 AH) * (선분 AH) = (선분 AC)2

결국 원 호를 이루는 모든 점이 될 것입니다. 그런데 점 H를 직선을 따라 안쪽으로 이동시켰을 경우, 즉 반지름 r보다 값이 작아진다면 점 ?의 위치는 r보다 커져야 할 것입니다. 바로 그 위치를 작도해 보는 것입니다.

방법은, 선분 AH에 수직 이등분선을 긋고(Perpendicular Bisector),

reflect_circle_3.png

그 선과 원 A와 만나는 교점을 J라고 했을 때, 이제 점 A와 그 교점 J를 현으로 하는 원을 구해야 합니다. 이를 위해 현의 중점으로부터 역시 수직 이등분선을 그으면,

reflect_circle_4.png

위와 같이 수직 이등분선과 선분 AC의 연장선 위에 만나는 교점 K가 결정되는데 바로 그 위치가 ?에 해당합니다. 그래서 결국 다음의 공식이 성립합니다.

(선분 AH) * (선분 AK) = r2

증명은 다음과 같이 정리(Show / Hide Object) 후 보조선을 그어 보면 모습을 드러냅니다.

reflect_circle_5.png

삼각형 AJH는 이등변 삼각형이고 삼각형 JKA 또한 이등변 삼각형입니다. 이로부터 삼각형 JKA의 각 KJA와 각 KAJ는 같기 때문에 두 개의 이등변 삼각형은 두 각이 같으므로 닮음 조건을 만족합니다. 따라서 밑변과 빗변의 비율이 같으므로 다음의 식이 성립합니다.

    (선분 AH) : (선분 AJ) = (선분 JA) : (선분 JK)
==> (선분 AJ) * (선분 JA) = (선분 AH) * (선분 JK)
==> r * r = (선분 AH) * (선분 JK)
==> r2 = (선분 AH) * (선분 AK)

물론 반대로도 위치를 잡을 수 있는데 이 과정은 위의 것과 반대로 하면 됩니다. 예를 들어, 점 K를 다음과 같이 원 밖에서 결정했을 때,

reflect_circle_6.png

점 K를 중심으로 선분 AK를 반지름으로 하는 원을 그리면 원 K와 원 A의 교점이 생기고,

reflect_circle_7.png

그 교점 J로부터 선분 AC에 수선의 발을 내리면(Perpendicular Line),

reflect_circle_8.png

점 I가 결정되므로 선분 IA를 반지름으로 하는 원을 그리면 점 H가 결정되는 것으로 완료됩니다.




자, 그럼 이제 간단하게 애니메이션 테스트를 할 수 있습니다. 점 H의 위치를 원 A의 반지름 내에서 이동해 주면 r2을 만족하기 위해 점 K의 위치가 그에 맞게 이동합니다.

reflect_circle_9.gif

이를 달리 말하면, 선분 AC의 구간이 (K가 아무리 멀어져도) 선분 CK의 구간과 일대일 대응 관계를 수립한다는 것입니다. 단지, 여기서 문제가 되는 것은 점 H가 원 A의 중심에 가까워져 그 길이가 0이 되면 점 K의 지점이 무한대로 멀어진다는 것인데, 점 A의 반전은 "무한원점"에 대응한다면서 여전히 일대일 대응 관계가 수립하는데 문제가 없다고 합니다.

(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/11/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 106  [107]  108  109  110  111  112  113  114  115  116  117  118  119  120  ...
NoWriterDateCnt.TitleFile(s)
11249정성태7/12/201718470오류 유형: 410. LoadLibrary("[...].dll") failed - The specified procedure could not be found.
11248정성태7/12/201724956오류 유형: 409. pip install pefile - 'cp949' codec can't decode byte 0xe2 in position 208687: illegal multibyte sequence
11247정성태7/12/201719267오류 유형: 408. SqlConnection 객체 생성 시 무한 대기 문제파일 다운로드1
11246정성태7/11/201718075VS.NET IDE: 118. Visual Studio - 다중 폴더에 포함된 파일들에 대한 "Copy to Output Directory"를 한 번에 설정하는 방법
11245정성태7/10/201723649개발 환경 구성: 321. Visual Studio Emulator for Android 소개 [2]
11244정성태7/10/201723195오류 유형: 407. Visual Studio에서 ASP.NET Core 실행할 때 dotnet.exe 프로세스의 -532462766 오류 발생 [1]
11243정성태7/10/201719888.NET Framework: 666. dotnet.exe - 윈도우 운영체제에서의 .NET Core 버전 찾기 규칙
11242정성태7/8/201720220제니퍼 .NET: 27. 제니퍼 닷넷 적용 사례 (7) - 노후된 스토리지 장비로 인한 웹 서비스 Hang (멈춤) 현상
11241정성태7/8/201718958오류 유형: 406. Xamarin 빌드 에러 XA5209, APT0000
11240정성태7/7/201721860.NET Framework: 665. ClickOnce를 웹 브라우저를 이용하지 않고 쿼리 문자열을 전달하면서 실행하는 방법 [3]파일 다운로드1
11239정성태7/6/201723380.NET Framework: 664. Protocol Handler - 웹 브라우저에서 데스크톱 응용 프로그램을 실행하는 방법 [5]파일 다운로드1
11238정성태7/6/201720884오류 유형: 405. NT 서비스 시작 시 "Error 1067: The process terminated unexpectedly." 오류 발생 [2]
11237정성태7/5/201722521.NET Framework: 663. C# - PDB 파일 경로를 PE 파일로부터 얻는 방법파일 다운로드1
11236정성태7/4/201725775.NET Framework: 662. C# - VHD/VHDX 가상 디스크를 마운트하지 않고 파일을 복사하는 방법파일 다운로드1
11235정성태6/29/201719930Math: 20. Matlab/Octave로 Gram-Schmidt 정규 직교 집합 구하는 방법
11234정성태6/29/201717287오류 유형: 404. SharePoint 2013 설치 과정에서 "The username is invalid The account must be a valid domain account" 오류 발생
11233정성태6/28/201717172오류 유형: 403. SharePoint Server 2013을 Windows Server 2016에 설치할 때 .NET 4.5 설치 오류 발생
11232정성태6/28/201718148Windows: 144. Windows Server 2016에 Windows Identity Extensions을 설치하는 방법
11231정성태6/28/201718797디버깅 기술: 86. windbg의 mscordacwks DLL 로드 문제 - 세 번째 이야기 [1]
11230정성태6/28/201717945제니퍼 .NET: 26. 제니퍼 닷넷 적용 사례 (6) - 잦은 Recycle 문제
11229정성태6/27/201719171오류 유형: 402. Windows Server Backup 관리 콘솔이 없어진 경우
11228정성태6/26/201716708개발 환경 구성: 320. Visual Basic .NET 프로젝트에서 내장 Manifest 자원을 EXE 파일로부터 제거하는 방법파일 다운로드1
11227정성태6/19/201724438개발 환경 구성: 319. windbg에서 python 스크립트 실행하는 방법 - pykd [6]
11226정성태6/19/201716323오류 유형: 401. Microsoft Edge를 실행했는데 입력 반응이 없는 경우
11225정성태6/19/201715600오류 유형: 400. Outlook - The required file ExSec32.dll cannot be found in your path. Install Microsoft Outlook again.
11224정성태6/13/201718095.NET Framework: 661. Json.NET의 DeserializeObject 수행 시 속성 이름을 동적으로 바꾸는 방법파일 다운로드1
... 106  [107]  108  109  110  111  112  113  114  115  116  117  118  119  120  ...