Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)

GeoGebra 기하 (21) - 반전기하학의 직선 및 원에 관한 반사변환

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

반전기하학에 대한 작도를 알아보겠습니다.

반전기하학
; https://ko.wikipedia.org/wiki/%EB%B0%98%EC%A0%84%EA%B8%B0%ED%95%98%ED%95%99

우선 평면에서 한 점을 선에 대해 반사변환을 해보겠습니다.

reflect_line_1.png

사실 이것은 너무나 직관적으로, 해당 선에 대하 수직선을 긋고(Perpendicular Line) 그 교점을 중심으로 원을 그리면(Circle with Center through Point) 또 다른 점의 위치가 결정이 됩니다.

reflect_line_2.png




원에 대한 반사변환은 좀 특이합니다. 지난 글에서,

GeoGebra 기하 (18) - 원의 중심 및 접선
; https://www.sysnet.pe.kr/2/0/11594

(0,0) 원점을 중심으로 하는 원의 방정식을,

x12 + y12 =  r2 (r == 반지름)

그려 보면,

reflect_circle_1.png

피타고라스 정리에 의해 쉽게 그 이유가 나옵니다.

(선분 AF)2 + (선분 FC)2 = (선분 AC)2

선분 AF = x 축의 값
선분 FC = y 축의 값
선분 AC = 반지름 r

x12 + y12 =  r2

r2이 되는 또 다른 경우를 보겠습니다. 위의 그림에서 다음과 같이 선분 AC에 임의의 점을 하나 찍었습니다.

reflect_circle_2.png

점 H는 알고 있고 점 ?의 위치는 알 수 없는 상태입니다. 이때 다음과 같은 공식을 만족하는 점 ?의 위치가 있을 것입니다.

(선분 AH) * (선분 A?) = (선분 AC)2

예를 들어 점 H의 위치가 점 C와 같다면,

(선분 AH) * (선분 AH) = (선분 AC)2

결국 원 호를 이루는 모든 점이 될 것입니다. 그런데 점 H를 직선을 따라 안쪽으로 이동시켰을 경우, 즉 반지름 r보다 값이 작아진다면 점 ?의 위치는 r보다 커져야 할 것입니다. 바로 그 위치를 작도해 보는 것입니다.

방법은, 선분 AH에 수직 이등분선을 긋고(Perpendicular Bisector),

reflect_circle_3.png

그 선과 원 A와 만나는 교점을 J라고 했을 때, 이제 점 A와 그 교점 J를 현으로 하는 원을 구해야 합니다. 이를 위해 현의 중점으로부터 역시 수직 이등분선을 그으면,

reflect_circle_4.png

위와 같이 수직 이등분선과 선분 AC의 연장선 위에 만나는 교점 K가 결정되는데 바로 그 위치가 ?에 해당합니다. 그래서 결국 다음의 공식이 성립합니다.

(선분 AH) * (선분 AK) = r2

증명은 다음과 같이 정리(Show / Hide Object) 후 보조선을 그어 보면 모습을 드러냅니다.

reflect_circle_5.png

삼각형 AJH는 이등변 삼각형이고 삼각형 JKA 또한 이등변 삼각형입니다. 이로부터 삼각형 JKA의 각 KJA와 각 KAJ는 같기 때문에 두 개의 이등변 삼각형은 두 각이 같으므로 닮음 조건을 만족합니다. 따라서 밑변과 빗변의 비율이 같으므로 다음의 식이 성립합니다.

    (선분 AH) : (선분 AJ) = (선분 JA) : (선분 JK)
==> (선분 AJ) * (선분 JA) = (선분 AH) * (선분 JK)
==> r * r = (선분 AH) * (선분 JK)
==> r2 = (선분 AH) * (선분 AK)

물론 반대로도 위치를 잡을 수 있는데 이 과정은 위의 것과 반대로 하면 됩니다. 예를 들어, 점 K를 다음과 같이 원 밖에서 결정했을 때,

reflect_circle_6.png

점 K를 중심으로 선분 AK를 반지름으로 하는 원을 그리면 원 K와 원 A의 교점이 생기고,

reflect_circle_7.png

그 교점 J로부터 선분 AC에 수선의 발을 내리면(Perpendicular Line),

reflect_circle_8.png

점 I가 결정되므로 선분 IA를 반지름으로 하는 원을 그리면 점 H가 결정되는 것으로 완료됩니다.




자, 그럼 이제 간단하게 애니메이션 테스트를 할 수 있습니다. 점 H의 위치를 원 A의 반지름 내에서 이동해 주면 r2을 만족하기 위해 점 K의 위치가 그에 맞게 이동합니다.

reflect_circle_9.gif

이를 달리 말하면, 선분 AC의 구간이 (K가 아무리 멀어져도) 선분 CK의 구간과 일대일 대응 관계를 수립한다는 것입니다. 단지, 여기서 문제가 되는 것은 점 H가 원 A의 중심에 가까워져 그 길이가 0이 되면 점 K의 지점이 무한대로 멀어진다는 것인데, 점 A의 반전은 "무한원점"에 대응한다면서 여전히 일대일 대응 관계가 수립하는데 문제가 없다고 합니다.

(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/11/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  4  5  [6]  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13793정성태10/28/20245149C/C++: 183. C++ - 윈도우에서 한글(및 유니코드)을 포함한 콘솔 프로그램을 컴파일 및 실행하는 방법
13792정성태10/27/20244633Linux: 99. Linux - 프로세스의 실행 파일 경로 확인
13791정성태10/27/20244901Windows: 267. Win32 API의 A(ANSI) 버전은 DBCS를 사용할까요?파일 다운로드1
13790정성태10/27/20244621Linux: 98. Ubuntu 22.04 - 리눅스 커널 빌드 및 업그레이드
13789정성태10/27/20244914Linux: 97. menuconfig에 CONFIG_DEBUG_INFO_BTF, CONFIG_DEBUG_INFO_BTF_MODULES 옵션이 없는 경우
13788정성태10/26/20244459Linux: 96. eBPF (bpf2go) - fentry, fexit를 이용한 트레이스
13787정성태10/26/20244973개발 환경 구성: 730. github - Linux 커널 repo를 윈도우 환경에서 git clone하는 방법 [1]
13786정성태10/26/20245218Windows: 266. Windows - 대소문자 구분이 가능한 파일 시스템
13785정성태10/23/20244985C/C++: 182. 윈도우가 운영하는 2개의 Code Page파일 다운로드1
13784정성태10/23/20245250Linux: 95. eBPF - kprobe를 이용한 트레이스
13783정성태10/23/20244860Linux: 94. eBPF - vmlinux.h 헤더 포함하는 방법 (bpf2go에서 사용)
13782정성태10/23/20244621Linux: 93. Ubuntu 22.04 - 커널 이미지로부터 커널 함수 역어셈블
13781정성태10/22/20244801오류 유형: 930. WSL + eBPF: modprobe: FATAL: Module kheaders not found in directory
13780정성태10/22/20245550Linux: 92. WSL 2 - 커널 이미지로부터 커널 함수 역어셈블
13779정성태10/22/20244845개발 환경 구성: 729. WSL 2 - Mariner VM 커널 이미지 업데이트 방법
13778정성태10/21/20245671C/C++: 181. C/C++ - 소스코드 파일의 인코딩, 바이너리 모듈 상태의 인코딩
13777정성태10/20/20244953Windows: 265. Win32 API의 W(유니코드) 버전은 UCS-2일까요? UTF-16 인코딩일까요?
13776정성태10/19/20245269C/C++: 180. C++ - 고수준 FILE I/O 함수에서의 Unicode stream 모드(_O_WTEXT, _O_U16TEXT, _O_U8TEXT)파일 다운로드1
13775정성태10/19/20245492개발 환경 구성: 728. 윈도우 환경의 개발자를 위한 UTF-8 환경 설정
13774정성태10/18/20245196Linux: 91. Container 환경에서 출력하는 eBPF bpf_get_current_pid_tgid의 pid가 존재하지 않는 이유
13773정성태10/18/20244883Linux: 90. pid 네임스페이스 구성으로 본 WSL 2 + docker-desktop
13772정성태10/17/20245160Linux: 89. pid 네임스페이스 구성으로 본 WSL 2 배포본의 계층 관계
13771정성태10/17/20245066Linux: 88. WSL 2 리눅스 배포본 내에서의 pid 네임스페이스 구성
13770정성태10/17/20245337Linux: 87. ps + grep 조합에서 grep 명령어를 사용한 프로세스를 출력에서 제거하는 방법
13769정성태10/15/20246114Linux: 86. Golang + bpf2go를 사용한 eBPF 기본 예제파일 다운로드1
13768정성태10/15/20245396C/C++: 179. C++ - _O_WTEXT, _O_U16TEXT, _O_U8TEXT의 Unicode stream 모드파일 다운로드2
1  2  3  4  5  [6]  7  8  9  10  11  12  13  14  15  ...