Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법

일단 행렬식을 이용하면,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

범용적으로 다항식에 대한 근사를 최소 자승법(최소 제곱법)으로 구할 수 있습니다. 하지만, 만약 대상을 "1차 함수"로 직선에 대한 근사만을 구한다면 복잡한 행렬 연산 없이 for 문만으로 매개 변수를 구하는 것이 가능합니다.

가령, 지난번 예제의 행렬식을 보겠습니다.

θ0 + θ1x1 = y1
θ0 + θ1x2 = y2
...
θ0 + θ1xn = yn



AX=B
A-1AX=A-1B
X=A-1B (A-1 == 의사역행렬)

결국 중요한 것은, 위의 식에서 A-1B 연산 결과를 구하는 것인데요, 헷갈리니까 일단 의사역행렬을 A+라고 정의하고, 이것을 행렬 라이브러리를 이용하면 단순히 Matrix 타입의 PseudoInverse를 호출하는 것으로 쉽게 해결했지만 만약 직접 구하고 싶다면 다음과 같은 과정을 거쳐야 합니다.

A+ = (ATA)-1AT

따라서, 매개변수를 나타내는 행렬 X는 B 행렬까지 곱해주면서 다음과 같이 계산할 수 있습니다.

X = A+ * B
  = (ATA)-1AT * B

이제 남은 작업은 위의 식을 간략하게 바꿔주면 됩니다. ^^




이 상태에서 A 행렬을 보면 "n x 2" 행렬이고 이것의 전치 행렬(AT)은 "2 x n" 행렬이 됩니다. 또한 B 행렬도 "n x 1" 행렬임을 감안하면 연산 결과가 다음과 같이 정리될 수 있습니다.

X = (ATA)-1AT * B
  = ((2 x n) * (n x 2))-1 * (2 x n) * (n x 1)
  = (2 x 2)-1 * (2 x 1)
  = (2 x 2) * (2 x 1)
  = (2 x 1)

즉, X 행렬은 (당연히 1차 함수의 매개변수 2개를 구하는 것이므로) 언제나 "2 x 1" 행렬이 나오므로 X 행렬의 인덱스에 해당하는 값을 정리해 볼 수도 있습니다. 이 과정을 단계별로 천천히 ^^ 접근해 볼까요?





2 x 2 행렬의 역행렬은 다음과 같이 간략화할 수 있으므로,



ATA 결과의 역행렬을 구할 수 있습니다.



위의 결과를 2 x n 행렬의 AT와 연산을 하면 과정이 좀 복잡하니 어차피 행렬곱은 결합법칙이 성립하므로 뒤의 AT B 연산을 먼저 다음과 같이 정리할 수 있습니다.



마지막으로 (ATA)-1(2 x 2 행렬)에 AT * B(2 x 1 행렬)을 곱하는 것이므로 다음과 같이 최종 정리가 됩니다.



따라서 1차 방정식의 매개변수는 이렇게 단일 식으로 각각 구할 수 있습니다.






구하는 과정에 정리할 식이 좀 끼어들어서 그렇지, 사실 C# 코드로 위의 계산을 나타내면 별거 아닙니다. ^^

// 단순 for 루프를 이용한 계산
private static (double theta1, double theta0) GetEquation2(double[] xData, double[] yData)
{
    double sumAnBn = 0.0;
    double sumAn = 0.0;
    double sumBn = 0.0;
    double sumAnAn = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        sumAnBn += xData[i] * yData[i];
        sumAn += xData[i];
        sumBn += yData[i];
        sumAnAn += xData[i] * xData[i];
    }

    int n = xData.Length;
    double Q = sumAnAn * n - sumAn * sumAn;

    double theta1 = (n * sumAnBn - sumAn * sumBn) / Q;
    double theta0 = (-sumAn * sumAnBn + sumAnAn * sumBn) / Q;

    return (theta1, theta0);
}

// 행렬을 이용한 계산
private static (double theta1, double theta0) GetEquation(double[] xData, double[] yData)
{
    Matrix matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector add1 = Vector.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    Matrix matAwith1 = matA.InsertColumn(1, add1);

    Console.WriteLine(matAwith1);
    Matrix matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix pinvMatA = matAwith1.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix matX = pinvMatA * matB;

    return (matX[0, 0], matX[1, 0]);
}

당연하겠지만 행렬식을 이용했던 GetEquation 메서드와 비교해 보면,

{
    // y = theta0 + (theta1 * x)
    (double theta1, double theta0) = GetEquation(xData, yData);
    Console.WriteLine($"[method1] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method1] y = 231.545758451005 + 1.39551018043075 * x
    */
}

{
    (double theta1, double theta0) = GetEquation2(xData, yData);
    Console.WriteLine($"[method2] y = {theta0} + {theta1} * x");
    /* 출력 결과
    [method2] y = 231.545758451006 + 1.39551018043075 * x
    */
}

부동소수점 계산임을 감안해 값이 거의 동일하다는 것을 알 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 5/28/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2019-05-28 10시35분
선형 최소 제곱법(Linear Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5579
정성태

... 31  32  [33]  34  35  36  37  38  39  40  41  42  43  44  45  ...
NoWriterDateCnt.TitleFile(s)
13118정성태8/18/202212784.NET Framework: 2043. WPF Color의 기본 색 영역은 (sRGB가 아닌) scRGB [2]
13117정성태8/17/202216638.NET Framework: 2042. C# 11 - 파일 범위 내에서 유효한 타입 정의 (File-local types)파일 다운로드1
13116정성태8/4/202216958.NET Framework: 2041. C# - Socket.Close 시 Socket.Receive 메서드에서 예외가 발생하는 문제파일 다운로드1
13115정성태8/3/202217669.NET Framework: 2040. C# - ValueTask와 Task의 성능 비교 [1]파일 다운로드1
13114정성태8/2/202217494.NET Framework: 2039. C# - Task와 비교해 본 ValueTask 사용법파일 다운로드1
13113정성태7/31/202217033.NET Framework: 2038. C# 11 - Span 타입에 대한 패턴 매칭 (Pattern matching on ReadOnlySpan<char>)
13112정성태7/30/202217904.NET Framework: 2037. C# 11 - 목록 패턴(List patterns) [1]파일 다운로드1
13111정성태7/29/202217306.NET Framework: 2036. C# 11 - IntPtr/UIntPtr과 nint/nuint의 통합파일 다운로드1
13110정성태7/27/202216940.NET Framework: 2035. C# 11 - 새로운 연산자 ">>>" (Unsigned Right Shift)파일 다운로드1
13109정성태7/27/202218595VS.NET IDE: 177. 비주얼 스튜디오 2022를 이용한 (소스 코드가 없는) 닷넷 모듈 디버깅 - "외부 원본(External Sources)" [1]
13108정성태7/26/202215913Linux: 53. container에 실행 중인 Golang 프로세스를 디버깅하는 방법 [1]
13107정성태7/25/202214701Linux: 52. Debian/Ubuntu 계열의 docker container에서 자주 설치하게 되는 명령어
13106정성태7/24/202214290오류 유형: 819. 닷넷 6 프로젝트의 "Conditional compilation symbols" 기본값 오류
13105정성태7/23/202216863.NET Framework: 2034. .NET Core/5+ 환경에서 (프로젝트가 아닌) C# 코드 파일을 입력으로 컴파일하는 방법 - 두 번째 이야기 [1]
13104정성태7/23/202220558Linux: 51. WSL - init에서 systemd로 전환하는 방법
13103정성태7/22/202215816오류 유형: 818. WSL - systemd-genie와 관련한 2가지(systemd-remount-fs.service, multipathd.socket) 에러
13102정성태7/19/202215650.NET Framework: 2033. .NET Core/5+에서는 구할 수 없는 HttpRuntime.AppDomainAppId
13101정성태7/15/202228835도서: 시작하세요! C# 10 프로그래밍
13100정성태7/15/202217495.NET Framework: 2032. C# 11 - shift 연산자 재정의에 대한 제약 완화 (Relaxing Shift Operator)
13099정성태7/14/202216961.NET Framework: 2031. C# 11 - 사용자 정의 checked 연산자파일 다운로드1
13098정성태7/13/202214645개발 환경 구성: 647. Azure - scale-out 상태의 App Service에서 특정 인스턴스에 요청을 보내는 방법 [1]
13097정성태7/12/202213665오류 유형: 817. Golang - binary.Read: invalid type int32
13096정성태7/8/202217311.NET Framework: 2030. C# 11 - UTF-8 문자열 리터럴
13095정성태7/7/202214750Windows: 208. AD 도메인에 참여하지 않은 컴퓨터에서 Kerberos 인증을 사용하는 방법
13094정성태7/6/202214428오류 유형: 816. Golang - "short write" 오류 원인
13093정성태7/5/202215149.NET Framework: 2029. C# - HttpWebRequest로 localhost 접속 시 2초 이상 지연
... 31  32  [33]  34  35  36  37  38  39  40  41  42  43  44  45  ...