Microsoft MVP성태의 닷넷 이야기
Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method) [링크 복사], [링크+제목 복사],
조회: 24509
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 다항식을 위한 최소 자승법(Least Squares Method)

지난 글에서,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

최소 자승법(최소 제곱법)을 이용해 1차 함수로 근사하는 것을 봤는데요, 이를 2차, 3차,...로 확장하는 것은 다음과 같이 매우 쉽습니다.

다항식(Polynomial): aXn 형식의 항들의 합으로 구성된 식
a: 계수(Coefficient)
X: 변수(Variable)
n: 지수(Exponent)

θ0 + θ1x1 + θ2x12 = y1
θ0 + θ1x2 + θ2x22 = y2
...
θ0 + θ1xn + θ2xn2 = yn



θ0 + θ1x1 + θ2x12 + θ3x13 = y1
θ0 + θ1x2 + θ2x22 + θ3x13 = y2
...
θ0 + θ1xn + θ2xn2 + θ3x13 = yn



따라서 행렬을 사용하는 경우 그냥 늘어나는 방정식의 계수만큼 행을 추가해 의사역행렬을 구한 후 연산하면 매개변수를 구할 수 있습니다.

private static double[] GetPolynomial(double[] xData, double[] yData, int numberOfEfficient)
{
    Matrix<double> matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector<double> add1 = Vector<double>.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    matA = matA.InsertColumn(1, add1);

    for (int i = 1; i < numberOfEfficient; i++)
    {
        double[] newColumnData = xData.Select((elem) => Math.Pow(elem, i + 1)).ToArray();
        Vector<double> addX = Vector<double>.Build.DenseOfArray(newColumnData);
        matA = matA.InsertColumn(0, addX);
    }

    Console.WriteLine(matA);
    Matrix<double> matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix<double> pinvMatA = matA.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix<double> matX = pinvMatA * matB;
    return matX.AsColumnMajorArray();
}

[파란색 - 1차 함수, 빨간색 - 2차 함수, 노란색 3차 함수]
lsm_polynomial_1.png

일반적으로 차수가 올라갈수록 (과적합의 문제가 발생할 수 있지만) 오류는 더 적어집니다. 확인을 위해 간단하게 다음과 같이 작성해 보면,

private static void ReportError(double[] xData, double[] yData, Func<double, double> func)
{
    double error = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        double diff = yData[i] - func(xData[i]);
        error += (diff * diff);
    }

    Console.WriteLine("Error: " + error);
}
/*
1차: Error: 19086.9489618992
2차: Error: 6555.72459287144
3차: Error: 5038.32058563331
*/

1차에 비해 2차에서 두드러지게 오류가 낮아지는 것을 볼 수 있습니다. 따라서 이런 경우 효율을 고려한다면 2차 함수를 사용하는 것이 좋은 선택일 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




지난 글에서 행렬 라이브러리를 직접 사용하지 않고 1차 근사식에 대한 매개 변수를 구하는 방법을 알아봤는데요,

C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

말 그대로 연립 방정식이므로 가우스 소거법을 이용해 매개 변수를 구하는 것도 가능합니다. 코드가 눈에 잘 안 들어오지만 어차피 복붙으로 써야 하는 것이라 큰 문제는 안 될 것입니다. ^^

Linear Equation Solver - Gaussian Elimination (C#)
; https://www.codeproject.com/Tips/388179/Linear-Equation-Solver-Gaussian-Elimination-Csharp

Gaussian elimination
; https://rosettacode.org/wiki/Gaussian_elimination#C.23

Solve a system of equations with Gaussian elimination in C#
; http://csharphelper.com/blog/2014/10/solve-a-system-of-equations-with-gaussian-elimination-in-c/

[C#/WINFORM] 다항식 최소 제곱법(Polynomial Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5580




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/2/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... [166]  167  168  169  170  171  172  173  174  175  176  177  178  179  180  ...
NoWriterDateCnt.TitleFile(s)
894정성태7/25/201026391오류 유형: 100. Could not find the Database Engine startup handle. [1]
893정성태7/25/201027554오류 유형: 99. .NET 4.0 설치된 윈도우 7에서 SQL Server 2008 R2 설치 오류
892정성태7/9/201029254오류 유형: 98. 영문 윈도우에 한글 SQL Server 2008 R2 설치할 때 오류 [4]
891정성태7/8/201025152오류 유형: 97. MsiGetProductInfo failed to retrieve ProductVersion for package with Product Code = '{...}'. Error code: 1605. [2]
889정성태7/5/201026816.NET Framework: 179. Dictionary.Get(A) 대신 Dictionary.Get(A.GetHashCode())를 사용해서는 안 되는 이유 [1]
888정성태6/30/201024627오류 유형: 96. Hyper-V 연결 오류 - A connection will not be made because credentials may not be sent to the remote computer
887정성태6/23/201034504개발 환경 구성: 79. Hyper-V의 가상 머신에서 소리 재생 방법 [2]
886정성태6/23/201022667제니퍼 .NET: 14. ASMX, WCF 호출 모니터링 및 누수 확인
885정성태6/20/201024277개발 환경 구성: 78. COM+ 서버에서 COM+ 서버를 호출하는 방법
884정성태6/20/201027184제니퍼 .NET: 13. COM+ 서버 모니터링 [2]
883정성태6/18/201029111개발 환경 구성: 77. Appinit_Dlls로 구현한 환경 변수 설정 DLL [5]파일 다운로드1
882정성태6/17/201031881개발 환경 구성: 76. JKS(Java Key Store)에 저장된 인증서를 ActiveX 코드 서명에 사용하는 방법 [1]
881정성태6/14/201021306제니퍼 .NET: 12. COM+ 호출 모니터링 및 누수 확인
879정성태6/10/201023922제니퍼 .NET: 11. 소켓 모니터링 기능으로 본 ASP.NET의 소켓 풀링 기능 [1]
878정성태6/6/201023766제니퍼 .NET: 10. 소켓 모니터링 기능으로 본 WCF의 WSDualHttpBinding 성능 부하
877정성태5/31/201020481제니퍼 .NET: 9. 성능 관리 퀴즈 세 번째 문제 (닷넷 개발자 컨퍼런스)
876정성태5/31/201019916제니퍼 .NET: 8. 성능 관리 퀴즈 두 번째 문제 (닷넷 개발자 컨퍼런스) [2]
875정성태5/30/201021672제니퍼 .NET: 7. 성능 관리 퀴즈 첫 번째 문제 (닷넷 개발자 컨퍼런스)
873정성태5/19/201028516제니퍼 .NET: 6. 제니퍼를 위한 방화벽 설정
872정성태5/15/201027806제니퍼 .NET: 5. 제니퍼 서버 - NT 서비스로 구동시키는 방법
871정성태5/13/201034396VC++: 40. MSBuild를 이용한 VC++ 프로젝트 빌드파일 다운로드1
870정성태5/12/201025421제니퍼 .NET: 4. 닷넷 APM 솔루션 - 제니퍼 닷넷의 기능 요약 [2]
869정성태11/8/201926853오류 유형 : 95. WCF 인증서 설정 관련 오류 정리 [4]
865정성태5/5/201029151개발 환경 구성: 75. 인증서의 개인키를 담은 물리 파일 위치 알아내는 방법파일 다운로드1
864정성태5/4/201032946.NET Framework: 178. WCF - 사용자 정의 인증 구현 예제 [4]파일 다운로드1
863정성태5/4/201058897개발 환경 구성: 74. 인증서 관련(CER, PVK, SPC, PFX) 파일 만드는 방법 [1]파일 다운로드1
... [166]  167  168  169  170  171  172  173  174  175  176  177  178  179  180  ...