Microsoft MVP성태의 닷넷 이야기
Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method) [링크 복사], [링크+제목 복사],
조회: 26005
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 다항식을 위한 최소 자승법(Least Squares Method)

지난 글에서,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

최소 자승법(최소 제곱법)을 이용해 1차 함수로 근사하는 것을 봤는데요, 이를 2차, 3차,...로 확장하는 것은 다음과 같이 매우 쉽습니다.

다항식(Polynomial): aXn 형식의 항들의 합으로 구성된 식
a: 계수(Coefficient)
X: 변수(Variable)
n: 지수(Exponent)

θ0 + θ1x1 + θ2x12 = y1
θ0 + θ1x2 + θ2x22 = y2
...
θ0 + θ1xn + θ2xn2 = yn



θ0 + θ1x1 + θ2x12 + θ3x13 = y1
θ0 + θ1x2 + θ2x22 + θ3x13 = y2
...
θ0 + θ1xn + θ2xn2 + θ3x13 = yn



따라서 행렬을 사용하는 경우 그냥 늘어나는 방정식의 계수만큼 행을 추가해 의사역행렬을 구한 후 연산하면 매개변수를 구할 수 있습니다.

private static double[] GetPolynomial(double[] xData, double[] yData, int numberOfEfficient)
{
    Matrix<double> matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector<double> add1 = Vector<double>.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    matA = matA.InsertColumn(1, add1);

    for (int i = 1; i < numberOfEfficient; i++)
    {
        double[] newColumnData = xData.Select((elem) => Math.Pow(elem, i + 1)).ToArray();
        Vector<double> addX = Vector<double>.Build.DenseOfArray(newColumnData);
        matA = matA.InsertColumn(0, addX);
    }

    Console.WriteLine(matA);
    Matrix<double> matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix<double> pinvMatA = matA.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix<double> matX = pinvMatA * matB;
    return matX.AsColumnMajorArray();
}

[파란색 - 1차 함수, 빨간색 - 2차 함수, 노란색 3차 함수]
lsm_polynomial_1.png

일반적으로 차수가 올라갈수록 (과적합의 문제가 발생할 수 있지만) 오류는 더 적어집니다. 확인을 위해 간단하게 다음과 같이 작성해 보면,

private static void ReportError(double[] xData, double[] yData, Func<double, double> func)
{
    double error = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        double diff = yData[i] - func(xData[i]);
        error += (diff * diff);
    }

    Console.WriteLine("Error: " + error);
}
/*
1차: Error: 19086.9489618992
2차: Error: 6555.72459287144
3차: Error: 5038.32058563331
*/

1차에 비해 2차에서 두드러지게 오류가 낮아지는 것을 볼 수 있습니다. 따라서 이런 경우 효율을 고려한다면 2차 함수를 사용하는 것이 좋은 선택일 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




지난 글에서 행렬 라이브러리를 직접 사용하지 않고 1차 근사식에 대한 매개 변수를 구하는 방법을 알아봤는데요,

C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

말 그대로 연립 방정식이므로 가우스 소거법을 이용해 매개 변수를 구하는 것도 가능합니다. 코드가 눈에 잘 안 들어오지만 어차피 복붙으로 써야 하는 것이라 큰 문제는 안 될 것입니다. ^^

Linear Equation Solver - Gaussian Elimination (C#)
; https://www.codeproject.com/Tips/388179/Linear-Equation-Solver-Gaussian-Elimination-Csharp

Gaussian elimination
; https://rosettacode.org/wiki/Gaussian_elimination#C.23

Solve a system of equations with Gaussian elimination in C#
; http://csharphelper.com/blog/2014/10/solve-a-system-of-equations-with-gaussian-elimination-in-c/

[C#/WINFORM] 다항식 최소 제곱법(Polynomial Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5580




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/2/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 166  167  168  169  [170]  171  172  173  174  175  176  177  178  179  180  ...
NoWriterDateCnt.TitleFile(s)
810정성태12/1/200936163.NET Framework: 168. [in,out] 배열을 C#에서 C/C++로 넘기는 방법 [3]
809정성태11/27/200925820오류 유형: 90. Method not found: 'Void System.Reflection.Emit.DynamicMethod..ctor(System.String, System.Type, System.Type[])'.
808정성태11/26/200934815VC++: 38. X64 빌드 오류: error LNK2001: unresolved external symbol [COMDLL]_ProxyFileInfo
807정성태11/23/200928662웹: 14. 로컬에 있는 HTML 페이지를 보호 모드에서 여는 방법
802정성태11/19/200930687.NET Framework: 167. 다른 스레드의 호출 스택 덤프 구하는 방법파일 다운로드1
801정성태11/18/200938143개발 환경 구성: 55. Hyper-V와 고성능 그래픽 카드의 성능 문제 해결 [1]
800정성태11/13/200930994VS.NET IDE: 66. 수동으로 구성해 본 VC++ 프로젝트 설정: ReleaseMinDependency
798정성태11/10/200929669개발 환경 구성: 54. .NET 개발자가 처음 설치해 본 TOMCAT [2]
797정성태11/9/200925892개발 환경 구성: 53. 물리 PC에 설치된 Windows 7을 Hyper-V로 이전하면?
796정성태11/2/200929931오류 유형: 89. Windows 7 백업 오류 - 0x80070057
795정성태11/2/200927065오류 유형: 88. TFS 2010 (beat2) 설치 오류 -TF255272
793정성태10/19/200929011.NET Framework: 166. WPF - XAML 요소의 네임스페이스와 CLR 타입 매핑
792정성태10/17/200929355웹: 13. IIS 7.5 에서 SQL Express 연결 시 오류
791정성태10/17/200933182웹: 12. 요청 페이지에 대해 빈 화면만 보이는 경우 [1]
789정성태10/13/200929067COM 개체 관련: 22. BB FlashBack SDK와 ActiveX 버전 관리 [7]
786정성태10/9/200925176개발 환경 구성: 52. 테스트를 위한 평가판 운영체제 구하기
785정성태10/8/200931715.NET Framework: 165. WPF - UI 업데이트를 바로 반영하고 싶다면? (2)파일 다운로드1
783정성태10/7/200929458.NET Framework: 164. WPF - 데이터 바인딩된 트리에서 부모 노드 찾는 방법 [1]파일 다운로드1
782정성태10/6/200931476개발 환경 구성: 51. Windows 7 - 다중 원격 접속(Remote Desktop) 허용
781정성태9/30/200928230.NET Framework: 163. WPF - TreeView 자동 스크롤 기능 해지 [2]파일 다운로드1
780정성태9/28/200932359Windows: 48. Windows 7/2008에서 ping을 위한 echo 요청 열기 [2]
779정성태9/24/200923720.NET Framework: 162. WPF - 중첩된 ScrollViewer의 크기 제어 - 두 번째 이야기파일 다운로드1
778정성태9/23/200925373오류 유형: 87. 시스템 시간 변경 후 Session이 맺어진 WCF 클라이언트의 예외 발생파일 다운로드1
776정성태9/17/200924421개발 환경 구성: 50. Reference assembly
775정성태9/13/200941119VC++: 37. XmlCodeGenerator를 C/C++ 코드 생성에 적용 [2]파일 다운로드1
773정성태9/5/200931801오류 유형 : 85. DEP 비호환 ActiveX 오류
... 166  167  168  169  [170]  171  172  173  174  175  176  177  178  179  180  ...