Microsoft MVP성태의 닷넷 이야기
Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method) [링크 복사], [링크+제목 복사],
조회: 25694
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 다항식을 위한 최소 자승법(Least Squares Method)

지난 글에서,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

최소 자승법(최소 제곱법)을 이용해 1차 함수로 근사하는 것을 봤는데요, 이를 2차, 3차,...로 확장하는 것은 다음과 같이 매우 쉽습니다.

다항식(Polynomial): aXn 형식의 항들의 합으로 구성된 식
a: 계수(Coefficient)
X: 변수(Variable)
n: 지수(Exponent)

θ0 + θ1x1 + θ2x12 = y1
θ0 + θ1x2 + θ2x22 = y2
...
θ0 + θ1xn + θ2xn2 = yn



θ0 + θ1x1 + θ2x12 + θ3x13 = y1
θ0 + θ1x2 + θ2x22 + θ3x13 = y2
...
θ0 + θ1xn + θ2xn2 + θ3x13 = yn



따라서 행렬을 사용하는 경우 그냥 늘어나는 방정식의 계수만큼 행을 추가해 의사역행렬을 구한 후 연산하면 매개변수를 구할 수 있습니다.

private static double[] GetPolynomial(double[] xData, double[] yData, int numberOfEfficient)
{
    Matrix<double> matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector<double> add1 = Vector<double>.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    matA = matA.InsertColumn(1, add1);

    for (int i = 1; i < numberOfEfficient; i++)
    {
        double[] newColumnData = xData.Select((elem) => Math.Pow(elem, i + 1)).ToArray();
        Vector<double> addX = Vector<double>.Build.DenseOfArray(newColumnData);
        matA = matA.InsertColumn(0, addX);
    }

    Console.WriteLine(matA);
    Matrix<double> matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix<double> pinvMatA = matA.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix<double> matX = pinvMatA * matB;
    return matX.AsColumnMajorArray();
}

[파란색 - 1차 함수, 빨간색 - 2차 함수, 노란색 3차 함수]
lsm_polynomial_1.png

일반적으로 차수가 올라갈수록 (과적합의 문제가 발생할 수 있지만) 오류는 더 적어집니다. 확인을 위해 간단하게 다음과 같이 작성해 보면,

private static void ReportError(double[] xData, double[] yData, Func<double, double> func)
{
    double error = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        double diff = yData[i] - func(xData[i]);
        error += (diff * diff);
    }

    Console.WriteLine("Error: " + error);
}
/*
1차: Error: 19086.9489618992
2차: Error: 6555.72459287144
3차: Error: 5038.32058563331
*/

1차에 비해 2차에서 두드러지게 오류가 낮아지는 것을 볼 수 있습니다. 따라서 이런 경우 효율을 고려한다면 2차 함수를 사용하는 것이 좋은 선택일 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




지난 글에서 행렬 라이브러리를 직접 사용하지 않고 1차 근사식에 대한 매개 변수를 구하는 방법을 알아봤는데요,

C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

말 그대로 연립 방정식이므로 가우스 소거법을 이용해 매개 변수를 구하는 것도 가능합니다. 코드가 눈에 잘 안 들어오지만 어차피 복붙으로 써야 하는 것이라 큰 문제는 안 될 것입니다. ^^

Linear Equation Solver - Gaussian Elimination (C#)
; https://www.codeproject.com/Tips/388179/Linear-Equation-Solver-Gaussian-Elimination-Csharp

Gaussian elimination
; https://rosettacode.org/wiki/Gaussian_elimination#C.23

Solve a system of equations with Gaussian elimination in C#
; http://csharphelper.com/blog/2014/10/solve-a-system-of-equations-with-gaussian-elimination-in-c/

[C#/WINFORM] 다항식 최소 제곱법(Polynomial Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5580




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/2/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13945정성태6/7/2025458오류 유형: 960. 파이썬 + conda - mysqlclient 사용 시 "NameError: name '_mysql' is not defined" 에러
13944정성태6/7/2025475오류 유형: 959. The trust relationship between this workstation and the primary domain failed. - 네 번째 이야기
13943정성태6/6/2025711개발 환경 구성: 748. Windows + Foundry Local - 로컬에서 AI 모델 활용
13942정성태6/5/2025887오류 유형: 958. winget 설치 시 "0x80d02002 : unknown error"
13941정성태6/2/20251040닷넷: 2334. C# - cpuid 명령어를 이용한 CPU 제조사 문자열 가져오기파일 다운로드1
13940정성태6/1/20251420C/C++: 188. C++의 32비트 + Release 어셈블리 코드를 .NET으로 포팅할 때 주의할 점파일 다운로드1
13939정성태5/29/20251711오류 유형: 957. NVIDIA Triton Inference Server - version `GLIBCXX_3.4.32' not found (required by /opt/tritonserver/backends/python/triton_python_backend_stub)
13938정성태5/29/20251435개발 환경 구성: 747. 파이썬 - WSL/docker에 구성한 Triton 예제 개발 환경
13937정성태5/24/20251360개발 환경 구성: 746. Windows + WSL2 환경에서 (tensorflow 등의) NVIDIA GPU 인식
13936정성태5/23/20251189개발 환경 구성: 745. Linux / WSL 환경에 Miniconda 설치하기
13935정성태5/20/20251233파이썬 - pip 사용 시 "ImportError: cannot import name 'html5lib' from 'pip._vendor'" 오류
13934정성태5/20/20251712스크립트: 77. 파이썬 - 'urllib.request' 모듈의 명시적/암시적 로딩 차이
13933정성태5/19/20251291오류 유형: 956. Visual Studio 2022가 17.12 버전부터 업데이트 되지 않는다면?
13932정성태5/18/20251502스크립트: 76. 파이썬 - Version 문자열 다루기(semver 패키지)
13931정성태5/17/20251793스크립트: 75. 파이썬 - Cython 기본 예제 및 컴파일
13930정성태5/17/20251491개발 환경 구성: 744. 파이썬 - Windows embeddable package 환경에서 외부 패키지 사용하는 방법(ex: UFO² 환경 구성)
13929정성태5/16/20251519오류 유형: 955. 파이썬 - "Windows embeddable package" REPL 환경에서 "NameError: name 'exit' is not defined"
13928정성태5/15/20251558오류 유형: 954. UFO² - "'Invalid URL (POST /v1/chat/completions/chat/completions)'"
13927정성태5/15/20251545오류 유형: 953. OpenAI - The API request of HOST_AGENT failed: OpenAI API request exceeded rate limit: Error code: 429
13926정성태5/14/20251907개발 환경 구성: 743. LLM과 윈도우의 만남 - Desktop AgentOS UFO² 기본 환경 구성
13925정성태5/12/20252010닷넷: 2333. C# - (Console 유형의 프로젝트에서) Clipboard 연동파일 다운로드1
13924정성태5/8/20251759닷넷: 2332. C# - (JetBrains Omea Reader 대상으로) 런타임 시에 메서드 가로채기 [2]파일 다운로드1
13923정성태5/5/20251505스크립트: 74. 파이썬 - C# - Python.NET의 RunSimpleScript, Exec, Eval 차이점파일 다운로드1
13922정성태5/3/20251757스크립트: 73. 파이썬 - Windows embeddable package 버전에서 tkinter 환경 구성
13921정성태5/3/20252284오류 유형: 952. 듀얼 채널 메모리 정렬을 지키지 않은 컴퓨터의 Windows 비정상 종료 현상(Blue Screen) [2]
[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...