Microsoft MVP성태의 닷넷 이야기
Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method) [링크 복사], [링크+제목 복사],
조회: 24285
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 다항식을 위한 최소 자승법(Least Squares Method)

지난 글에서,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

최소 자승법(최소 제곱법)을 이용해 1차 함수로 근사하는 것을 봤는데요, 이를 2차, 3차,...로 확장하는 것은 다음과 같이 매우 쉽습니다.

다항식(Polynomial): aXn 형식의 항들의 합으로 구성된 식
a: 계수(Coefficient)
X: 변수(Variable)
n: 지수(Exponent)

θ0 + θ1x1 + θ2x12 = y1
θ0 + θ1x2 + θ2x22 = y2
...
θ0 + θ1xn + θ2xn2 = yn



θ0 + θ1x1 + θ2x12 + θ3x13 = y1
θ0 + θ1x2 + θ2x22 + θ3x13 = y2
...
θ0 + θ1xn + θ2xn2 + θ3x13 = yn



따라서 행렬을 사용하는 경우 그냥 늘어나는 방정식의 계수만큼 행을 추가해 의사역행렬을 구한 후 연산하면 매개변수를 구할 수 있습니다.

private static double[] GetPolynomial(double[] xData, double[] yData, int numberOfEfficient)
{
    Matrix<double> matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector<double> add1 = Vector<double>.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    matA = matA.InsertColumn(1, add1);

    for (int i = 1; i < numberOfEfficient; i++)
    {
        double[] newColumnData = xData.Select((elem) => Math.Pow(elem, i + 1)).ToArray();
        Vector<double> addX = Vector<double>.Build.DenseOfArray(newColumnData);
        matA = matA.InsertColumn(0, addX);
    }

    Console.WriteLine(matA);
    Matrix<double> matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix<double> pinvMatA = matA.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix<double> matX = pinvMatA * matB;
    return matX.AsColumnMajorArray();
}

[파란색 - 1차 함수, 빨간색 - 2차 함수, 노란색 3차 함수]
lsm_polynomial_1.png

일반적으로 차수가 올라갈수록 (과적합의 문제가 발생할 수 있지만) 오류는 더 적어집니다. 확인을 위해 간단하게 다음과 같이 작성해 보면,

private static void ReportError(double[] xData, double[] yData, Func<double, double> func)
{
    double error = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        double diff = yData[i] - func(xData[i]);
        error += (diff * diff);
    }

    Console.WriteLine("Error: " + error);
}
/*
1차: Error: 19086.9489618992
2차: Error: 6555.72459287144
3차: Error: 5038.32058563331
*/

1차에 비해 2차에서 두드러지게 오류가 낮아지는 것을 볼 수 있습니다. 따라서 이런 경우 효율을 고려한다면 2차 함수를 사용하는 것이 좋은 선택일 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




지난 글에서 행렬 라이브러리를 직접 사용하지 않고 1차 근사식에 대한 매개 변수를 구하는 방법을 알아봤는데요,

C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

말 그대로 연립 방정식이므로 가우스 소거법을 이용해 매개 변수를 구하는 것도 가능합니다. 코드가 눈에 잘 안 들어오지만 어차피 복붙으로 써야 하는 것이라 큰 문제는 안 될 것입니다. ^^

Linear Equation Solver - Gaussian Elimination (C#)
; https://www.codeproject.com/Tips/388179/Linear-Equation-Solver-Gaussian-Elimination-Csharp

Gaussian elimination
; https://rosettacode.org/wiki/Gaussian_elimination#C.23

Solve a system of equations with Gaussian elimination in C#
; http://csharphelper.com/blog/2014/10/solve-a-system-of-equations-with-gaussian-elimination-in-c/

[C#/WINFORM] 다항식 최소 제곱법(Polynomial Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5580




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/2/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  4  5  [6]  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13793정성태10/28/20245150C/C++: 183. C++ - 윈도우에서 한글(및 유니코드)을 포함한 콘솔 프로그램을 컴파일 및 실행하는 방법
13792정성태10/27/20244643Linux: 99. Linux - 프로세스의 실행 파일 경로 확인
13791정성태10/27/20244903Windows: 267. Win32 API의 A(ANSI) 버전은 DBCS를 사용할까요?파일 다운로드1
13790정성태10/27/20244621Linux: 98. Ubuntu 22.04 - 리눅스 커널 빌드 및 업그레이드
13789정성태10/27/20244918Linux: 97. menuconfig에 CONFIG_DEBUG_INFO_BTF, CONFIG_DEBUG_INFO_BTF_MODULES 옵션이 없는 경우
13788정성태10/26/20244459Linux: 96. eBPF (bpf2go) - fentry, fexit를 이용한 트레이스
13787정성태10/26/20244981개발 환경 구성: 730. github - Linux 커널 repo를 윈도우 환경에서 git clone하는 방법 [1]
13786정성태10/26/20245224Windows: 266. Windows - 대소문자 구분이 가능한 파일 시스템
13785정성태10/23/20244985C/C++: 182. 윈도우가 운영하는 2개의 Code Page파일 다운로드1
13784정성태10/23/20245258Linux: 95. eBPF - kprobe를 이용한 트레이스
13783정성태10/23/20244864Linux: 94. eBPF - vmlinux.h 헤더 포함하는 방법 (bpf2go에서 사용)
13782정성태10/23/20244622Linux: 93. Ubuntu 22.04 - 커널 이미지로부터 커널 함수 역어셈블
13781정성태10/22/20244804오류 유형: 930. WSL + eBPF: modprobe: FATAL: Module kheaders not found in directory
13780정성태10/22/20245556Linux: 92. WSL 2 - 커널 이미지로부터 커널 함수 역어셈블
13779정성태10/22/20244852개발 환경 구성: 729. WSL 2 - Mariner VM 커널 이미지 업데이트 방법
13778정성태10/21/20245679C/C++: 181. C/C++ - 소스코드 파일의 인코딩, 바이너리 모듈 상태의 인코딩
13777정성태10/20/20244954Windows: 265. Win32 API의 W(유니코드) 버전은 UCS-2일까요? UTF-16 인코딩일까요?
13776정성태10/19/20245274C/C++: 180. C++ - 고수준 FILE I/O 함수에서의 Unicode stream 모드(_O_WTEXT, _O_U16TEXT, _O_U8TEXT)파일 다운로드1
13775정성태10/19/20245493개발 환경 구성: 728. 윈도우 환경의 개발자를 위한 UTF-8 환경 설정
13774정성태10/18/20245197Linux: 91. Container 환경에서 출력하는 eBPF bpf_get_current_pid_tgid의 pid가 존재하지 않는 이유
13773정성태10/18/20244884Linux: 90. pid 네임스페이스 구성으로 본 WSL 2 + docker-desktop
13772정성태10/17/20245163Linux: 89. pid 네임스페이스 구성으로 본 WSL 2 배포본의 계층 관계
13771정성태10/17/20245066Linux: 88. WSL 2 리눅스 배포본 내에서의 pid 네임스페이스 구성
13770정성태10/17/20245355Linux: 87. ps + grep 조합에서 grep 명령어를 사용한 프로세스를 출력에서 제거하는 방법
13769정성태10/15/20246120Linux: 86. Golang + bpf2go를 사용한 eBPF 기본 예제파일 다운로드1
13768정성태10/15/20245407C/C++: 179. C++ - _O_WTEXT, _O_U16TEXT, _O_U8TEXT의 Unicode stream 모드파일 다운로드2
1  2  3  4  5  [6]  7  8  9  10  11  12  13  14  15  ...