Microsoft MVP성태의 닷넷 이야기
Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method) [링크 복사], [링크+제목 복사],
조회: 24563
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 다항식을 위한 최소 자승법(Least Squares Method)

지난 글에서,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

최소 자승법(최소 제곱법)을 이용해 1차 함수로 근사하는 것을 봤는데요, 이를 2차, 3차,...로 확장하는 것은 다음과 같이 매우 쉽습니다.

다항식(Polynomial): aXn 형식의 항들의 합으로 구성된 식
a: 계수(Coefficient)
X: 변수(Variable)
n: 지수(Exponent)

θ0 + θ1x1 + θ2x12 = y1
θ0 + θ1x2 + θ2x22 = y2
...
θ0 + θ1xn + θ2xn2 = yn



θ0 + θ1x1 + θ2x12 + θ3x13 = y1
θ0 + θ1x2 + θ2x22 + θ3x13 = y2
...
θ0 + θ1xn + θ2xn2 + θ3x13 = yn



따라서 행렬을 사용하는 경우 그냥 늘어나는 방정식의 계수만큼 행을 추가해 의사역행렬을 구한 후 연산하면 매개변수를 구할 수 있습니다.

private static double[] GetPolynomial(double[] xData, double[] yData, int numberOfEfficient)
{
    Matrix<double> matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector<double> add1 = Vector<double>.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    matA = matA.InsertColumn(1, add1);

    for (int i = 1; i < numberOfEfficient; i++)
    {
        double[] newColumnData = xData.Select((elem) => Math.Pow(elem, i + 1)).ToArray();
        Vector<double> addX = Vector<double>.Build.DenseOfArray(newColumnData);
        matA = matA.InsertColumn(0, addX);
    }

    Console.WriteLine(matA);
    Matrix<double> matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix<double> pinvMatA = matA.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix<double> matX = pinvMatA * matB;
    return matX.AsColumnMajorArray();
}

[파란색 - 1차 함수, 빨간색 - 2차 함수, 노란색 3차 함수]
lsm_polynomial_1.png

일반적으로 차수가 올라갈수록 (과적합의 문제가 발생할 수 있지만) 오류는 더 적어집니다. 확인을 위해 간단하게 다음과 같이 작성해 보면,

private static void ReportError(double[] xData, double[] yData, Func<double, double> func)
{
    double error = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        double diff = yData[i] - func(xData[i]);
        error += (diff * diff);
    }

    Console.WriteLine("Error: " + error);
}
/*
1차: Error: 19086.9489618992
2차: Error: 6555.72459287144
3차: Error: 5038.32058563331
*/

1차에 비해 2차에서 두드러지게 오류가 낮아지는 것을 볼 수 있습니다. 따라서 이런 경우 효율을 고려한다면 2차 함수를 사용하는 것이 좋은 선택일 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




지난 글에서 행렬 라이브러리를 직접 사용하지 않고 1차 근사식에 대한 매개 변수를 구하는 방법을 알아봤는데요,

C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

말 그대로 연립 방정식이므로 가우스 소거법을 이용해 매개 변수를 구하는 것도 가능합니다. 코드가 눈에 잘 안 들어오지만 어차피 복붙으로 써야 하는 것이라 큰 문제는 안 될 것입니다. ^^

Linear Equation Solver - Gaussian Elimination (C#)
; https://www.codeproject.com/Tips/388179/Linear-Equation-Solver-Gaussian-Elimination-Csharp

Gaussian elimination
; https://rosettacode.org/wiki/Gaussian_elimination#C.23

Solve a system of equations with Gaussian elimination in C#
; http://csharphelper.com/blog/2014/10/solve-a-system-of-equations-with-gaussian-elimination-in-c/

[C#/WINFORM] 다항식 최소 제곱법(Polynomial Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5580




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/2/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 76  77  78  79  80  81  82  [83]  84  85  86  87  88  89  90  ...
NoWriterDateCnt.TitleFile(s)
11862정성태4/7/201920277개발 환경 구성: 437. .NET EXE의 ASLR 기능을 끄는 방법
11861정성태4/6/201919634디버깅 기술: 126. windbg - .NET x86 CLR2/CLR4 EXE의 EntryPoint
11860정성태4/5/201923561오류 유형: 527. Visual C++ 컴파일 오류 - error C2220: warning treated as error - no 'object' file generated
11859정성태4/4/201920843디버깅 기술: 125. WinDbg로 EXE의 EntryPoint에서 BP 거는 방법
11858정성태3/27/201921697VC++: 129. EXE를 LoadLibrary로 로딩해 PE 헤더에 있는 EntryPoint를 직접 호출하는 방법파일 다운로드1
11857정성태3/26/201919566VC++: 128. strncpy 사용 시 주의 사항(Linux / Windows)
11856정성태3/25/201919791VS.NET IDE: 134. 마이크로소프트의 CoreCLR 프로파일러 리눅스 예제를 Visual Studio F5 원격 디버깅하는 방법 [1]파일 다운로드1
11855정성태3/25/201921982개발 환경 구성: 436. 페이스북 HTTPS 인증을 localhost에서 테스트하는 방법
11854정성태3/25/201917699VS.NET IDE: 133. IIS Express로 호스팅하는 사이트를 https로 접근하는 방법
11853정성태3/24/201920453개발 환경 구성: 435. 존재하지 않는 IP 주소에 대한 Dns.GetHostByAddress/gethostbyaddr/GetNameInfoW 실행이 느리다면? - 두 번째 이야기 [1]
11852정성태3/20/201919638개발 환경 구성: 434. 존재하지 않는 IP 주소에 대한 Dns.GetHostByAddress/gethostbyaddr/GetNameInfoW 실행이 느리다면?파일 다운로드1
11851정성태3/19/201923393Linux: 8. C# - 리눅스 환경에서 DllImport 대신 라이브러리 동적 로드 처리 [2]
11850정성태3/18/201922491.NET Framework: 813. C# async 메서드에서 out/ref/in 유형의 인자를 사용하지 못하는 이유
11849정성태3/18/201921797.NET Framework: 812. pscp.exe 기능을 C#으로 제어하는 방법파일 다운로드1
11848정성태3/17/201918572스크립트: 14. 윈도우 CMD - 파일이 변경된 경우 파일명을 변경해 복사하고 싶다면?
11847정성태3/17/201923031Linux: 7. 리눅스 C/C++ - 공유 라이브러리 동적 로딩 후 export 함수 사용 방법파일 다운로드1
11846정성태3/15/201921685Linux: 6. getenv, setenv가 언어/운영체제마다 호환이 안 되는 문제
11845정성태3/15/201921785Linux: 5. Linux 응용 프로그램의 (C++) so 의존성 줄이기(ReleaseMinDependency) [3]
11844정성태3/14/201923117개발 환경 구성: 434. Visual Studio 2019 - 리눅스 프로젝트를 이용한 공유/실행(so/out) 프로그램 개발 환경 설정 [1]파일 다운로드1
11843정성태3/14/201918051기타: 75. MSDN 웹 사이트를 기본으로 영문 페이지로 열고 싶다면?
11842정성태3/13/201916423개발 환경 구성: 433. 마이크로소프트의 CoreCLR 프로파일러 예제를 Visual Studio CMake로 빌드하는 방법 [1]파일 다운로드1
11841정성태3/13/201916704VS.NET IDE: 132. Visual Studio 2019 - CMake의 컴파일러를 기본 g++에서 clang++로 변경
11840정성태3/13/201918344오류 유형: 526. 윈도우 10 Ubuntu App 환경에서는 USB 외장 하드 접근 불가
11839정성태3/12/201922353디버깅 기술: 124. .NET Core 웹 앱을 호스팅하는 Azure App Services의 프로세스 메모리 덤프 및 windbg 분석 개요 [3]
11838정성태3/7/201925940.NET Framework: 811. (번역글) .NET Internals Cookbook Part 1 - Exceptions, filters and corrupted processes [1]파일 다운로드1
11837정성태3/6/201939849기타: 74. 도서: 시작하세요! C# 7.3 프로그래밍 [10]
... 76  77  78  79  80  81  82  [83]  84  85  86  87  88  89  90  ...