Microsoft MVP성태의 닷넷 이야기
Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method) [링크 복사], [링크+제목 복사],
조회: 24538
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 다항식을 위한 최소 자승법(Least Squares Method)

지난 글에서,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

최소 자승법(최소 제곱법)을 이용해 1차 함수로 근사하는 것을 봤는데요, 이를 2차, 3차,...로 확장하는 것은 다음과 같이 매우 쉽습니다.

다항식(Polynomial): aXn 형식의 항들의 합으로 구성된 식
a: 계수(Coefficient)
X: 변수(Variable)
n: 지수(Exponent)

θ0 + θ1x1 + θ2x12 = y1
θ0 + θ1x2 + θ2x22 = y2
...
θ0 + θ1xn + θ2xn2 = yn



θ0 + θ1x1 + θ2x12 + θ3x13 = y1
θ0 + θ1x2 + θ2x22 + θ3x13 = y2
...
θ0 + θ1xn + θ2xn2 + θ3x13 = yn



따라서 행렬을 사용하는 경우 그냥 늘어나는 방정식의 계수만큼 행을 추가해 의사역행렬을 구한 후 연산하면 매개변수를 구할 수 있습니다.

private static double[] GetPolynomial(double[] xData, double[] yData, int numberOfEfficient)
{
    Matrix<double> matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector<double> add1 = Vector<double>.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    matA = matA.InsertColumn(1, add1);

    for (int i = 1; i < numberOfEfficient; i++)
    {
        double[] newColumnData = xData.Select((elem) => Math.Pow(elem, i + 1)).ToArray();
        Vector<double> addX = Vector<double>.Build.DenseOfArray(newColumnData);
        matA = matA.InsertColumn(0, addX);
    }

    Console.WriteLine(matA);
    Matrix<double> matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix<double> pinvMatA = matA.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix<double> matX = pinvMatA * matB;
    return matX.AsColumnMajorArray();
}

[파란색 - 1차 함수, 빨간색 - 2차 함수, 노란색 3차 함수]
lsm_polynomial_1.png

일반적으로 차수가 올라갈수록 (과적합의 문제가 발생할 수 있지만) 오류는 더 적어집니다. 확인을 위해 간단하게 다음과 같이 작성해 보면,

private static void ReportError(double[] xData, double[] yData, Func<double, double> func)
{
    double error = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        double diff = yData[i] - func(xData[i]);
        error += (diff * diff);
    }

    Console.WriteLine("Error: " + error);
}
/*
1차: Error: 19086.9489618992
2차: Error: 6555.72459287144
3차: Error: 5038.32058563331
*/

1차에 비해 2차에서 두드러지게 오류가 낮아지는 것을 볼 수 있습니다. 따라서 이런 경우 효율을 고려한다면 2차 함수를 사용하는 것이 좋은 선택일 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




지난 글에서 행렬 라이브러리를 직접 사용하지 않고 1차 근사식에 대한 매개 변수를 구하는 방법을 알아봤는데요,

C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

말 그대로 연립 방정식이므로 가우스 소거법을 이용해 매개 변수를 구하는 것도 가능합니다. 코드가 눈에 잘 안 들어오지만 어차피 복붙으로 써야 하는 것이라 큰 문제는 안 될 것입니다. ^^

Linear Equation Solver - Gaussian Elimination (C#)
; https://www.codeproject.com/Tips/388179/Linear-Equation-Solver-Gaussian-Elimination-Csharp

Gaussian elimination
; https://rosettacode.org/wiki/Gaussian_elimination#C.23

Solve a system of equations with Gaussian elimination in C#
; http://csharphelper.com/blog/2014/10/solve-a-system-of-equations-with-gaussian-elimination-in-c/

[C#/WINFORM] 다항식 최소 제곱법(Polynomial Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5580




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/2/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 91  92  93  94  95  96  97  98  99  100  101  102  103  104  [105]  ...
NoWriterDateCnt.TitleFile(s)
11300정성태9/10/201721189.NET Framework: 681. dotnet.exe - run, exec, build, restore, publish 차이점 [3]
11299정성태9/9/201719865개발 환경 구성: 330. Hyper-V VM의 Internal Network를 Private 유형으로 만드는 방법
11298정성태9/8/201723163VC++: 119. EnumProcesses / EnumProcessModules API 사용 시 주의점 [1]
11297정성태9/8/201719844디버깅 기술: 96. windbg - 풀 덤프에 포함된 모든 닷넷 모듈을 파일로 저장하는 방법
11296정성태9/8/201722940웹: 36. Edge - "이 웹 사이트는 이전 기술에서 실행되며 Internet Explorer에서만 작동합니다." 끄는 방법
11295정성태9/7/201720434디버깅 기술: 95. Windbg - .foreach 사용법
11294정성태9/4/201720094개발 환경 구성: 329. 마이크로소프트의 CoreCLR 프로파일러 예제 빌드 방법 [1]
11293정성태9/4/201720708개발 환경 구성: 328. Visual Studio(devenv.exe)를 배치 파일(.bat)을 통해 실행하는 방법
11292정성태9/4/201718892오류 유형: 419. Cannot connect to WMI provider - Invalid class [0x80041010]
11291정성태9/3/201720712개발 환경 구성: 327. 아파치 서버 2.4를 위한 mod_aspdotnet 마이그레이션
11290정성태9/3/201723974개발 환경 구성: 326. 아파치 서버에서 ASP.NET을 실행하는 mod_aspdotnet 모듈 [2]
11289정성태9/3/201721636개발 환경 구성: 325. GAC에 어셈블리 등록을 위해 gacutil.exe을 사용하는 경우 주의 사항
11288정성태9/3/201718444개발 환경 구성: 324. 윈도우용 XAMPP의 아파치 서버 구성 방법
11287정성태9/1/201727597.NET Framework: 680. C# - 작업자(Worker) 스레드와 UI 스레드 [11]
11286정성태8/28/201715024기타: 67. App Privacy Policy
11285정성태8/28/201723517.NET Framework: 679. C# - 개인 키 보안의 SFTP를 이용한 파일 업로드파일 다운로드1
11284정성태8/27/201721540.NET Framework: 678. 데스크톱 윈도우 응용 프로그램에서 UWP 라이브러리를 이용한 비디오 장치 열람하는 방법 [1]파일 다운로드1
11283정성태8/27/201717313오류 유형: 418. CSS3117: @font-face failed cross-origin request. Resource access is restricted.
11282정성태8/26/201719761Math: 22. 행렬로 바라보는 피보나치 수열
11281정성태8/26/201721600.NET Framework: 677. Visual Studio 2017 - NuGet 패키지를 직접 참조하는 PackageReference 지원 [2]
11280정성태8/24/201718592디버깅 기술: 94. windbg - 풀 덤프에 포함된 모든 모듈을 파일로 저장하는 방법
11279정성태8/23/201730188.NET Framework: 676. C# Thread가 Running 상태인지 아는 방법
11278정성태8/23/201718440오류 유형: 417. TFS - Warning - Unable to refresh ... because you have a pending edit. [1]
11277정성태8/23/201719679오류 유형: 416. msbuild - error MSB4062: The "TransformXml" task could not be loaded from the assembly
11276정성태8/23/201723921.NET Framework: 675. C# - (파일) 확장자와 연결된 실행 파일 경로 찾기 [2]파일 다운로드1
11275정성태8/23/201732953개발 환경 구성: 323. Visual Studio 설치 없이 빌드 환경 구성 - Visual Studio 2017용 Build Tools [1]
... 91  92  93  94  95  96  97  98  99  100  101  102  103  104  [105]  ...