Microsoft MVP성태의 닷넷 이야기
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최대 값 구하기

예전에 미분을 이용한,

그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

방정식의 근사해를 알아본 적이 있는데요. 도함수의 다음과 같은 특성을 이용하면,

f' < 0: 최솟값은 우측에.
f' = 0: 최솟값
f' > 0: 최솟값은 좌측에.

최솟값을 (그 반대로는 최댓값을) 근사할 수 있습니다. 예를 들어, f(x) = x^2 - 2x + 1이라는 방정식이 있다면,

gradient_descent_1.png

이것의 도함수는 f'(x) = 2x - 2가 되고, (무작위로 선정한) x = 10으로 시작하는 경우 최솟값을 다음과 같이 이동하면서 근사할 수 있습니다.

f'(10) = 18 > 0: 최솟값은 좌측에 있으므로 다음번 x는 좀 더 작게 시도.
f'( 9) = 16 > 0:  "
f'( 8) = 14 > 0:  "
...            :  "
f'( 1) =  0 = 0:  최솟값

물론 위의 경우에는 1씩 줄여나가다 운이 좋아 정확히 최솟값 위치에 왔지만 단순하지 않은 상황에서는 근삿값에 대한 범위를 마련하고 그것을 만족하는 수준이거나, 아니면 근삿값으로 진행하는 과정 중에 원하는 수준만큼의 변화가 없다면 중단하는 식으로 작성하면 됩니다.

코드로 만들어 보면,

using MathNet.Numerics.Random;
using PLplot;
using System;
using System.Linq;

namespace ConsoleApp2
{
    class Program
    {
        static void Main(string[] args)
        {
            Func<double, double> f = (x) => (x - 1) * (x - 1);
            Func<double, double> df = (x) => 2 * x - 2;

            // 그래프 출력
            DrawPlotChart(-14, 14, -10, 120, f, df);
        }

        private static void DrawPlotChart(double xMin, double xMax, double yMin, double yMax, 
            Func<double, double> orgDrawFunc, Func<double, double> dfDrawFunc)
        {
            string chartFileName = "click.svg";

            using (var pl = new PLStream())
            {
                pl.sdev("svg");
                pl.sfnam(chartFileName);
                pl.spal0("cmap0_alternate.pal");
                pl.init();

                pl.env(xMin, xMax, yMin, yMax, AxesScale.Independent, AxisBox.BoxTicksLabelsAxes);
                pl.lab("X", "Y", "y = x^2 - 2x + 1");

                pl.spal0("");
                pl.col0(PLplot.Color.Blue);

                // y = x ^ 2 - 2x + 1 그래프를 그리고,
                {
                    double[] ptX = Utils.RangeInclusive(xMin, xMax, 0.01).ToArray();
                    double[] ptY = null;

                    ptY = new double[ptX.Length];
                    for (int i = 0; i < ptX.Length; i++)
                    {
                        ptY[i] = orgDrawFunc(ptX[i]);
                    }

                    pl.line(ptX, ptY);
                }

                char code = Symbol.Bullet;
                pl.col0(PLplot.Color.Blue);

                // x = 15에서 시작해 도함수의 결과에 따라 0.1씩 변위를 주며 최솟값으로 이동하는 과정을 점으로 출력
                int maxTrial = 1000;
                double anyX = 15.0; // 랜덤 값

                while (maxTrial-- > 0)
                {
                    double yPos = dfDrawFunc(anyX);
                    pl.Point(anyX, orgDrawFunc(anyX), code);

                    if (yPos.GetCloseToZeroSlope())
                    {
                        break;
                    }
                    else anyX += (yPos > 0) ? -0.1 : 0.1;
                }

                pl.eop();
                pl.gver(out var verText);
            }
        }
    }

    public static class Utils
    {
        public static IEnumerable<T> RangeInclusive<T>(T start, T stop, T step)
        {
            dynamic dStart = start;
            dynamic dStop = stop;
            dynamic dStep = step;

            if (dStep == 0)
                throw new ArgumentException("Parameter step cannot equal zero.");

            if (dStart < dStop && dStep > 0)
            {
                for (var i = dStart; i <= dStop; i += dStep)
                {
                    yield return i;
                }
            }
            else if (dStart > dStop && dStep < 0)
            {
                for (var i = dStart; i >= dStop; i += dStep)
                {
                    yield return i;
                }
            }
        }

        public static void Point(this PLStream pl, double x, double y, char code)
        {
            pl.poin(new double[] { x }, new double[] { y }, code);
        }

        public static bool GetCloseToZeroSlope(this double value)
        {
            return Math.Abs(value) < 1e-03 ? true : false;
        }
    }
}

다음과 같은 출력을 얻을 수 있습니다.

gradient_descent_2.png

보는 바와 같이 최솟값으로 잘 수렴하고 있죠! ^^




"그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#" 글을 보면, 도함수로 접근하면서 처음에는 크게 이동하다가 점차 간격이 작아지게 되는데 마찬가지로 경사 하강법도 단순하게 x의 값을 일정 수로 줄여나가기 보다 다음과 같은 식으로 이전 x 값 기준으로 줄여나가는 방식이 있습니다.

x := x - f'(x)

하지만, 단순히 위와 같이 하면 f'(x)의 반환값이 크기 때문에 x 값의 부호를 반대로 만들어 근삿값을 진동하는 식으로 접근하게 됩니다. 이런 문제를 해결하기 위해 약간의 조정값을 f'(x)에 곱해주면,

x := x - n * f'(x) // n == 학습 비율(learning rate)
                   // 예를 들어 n = 0.1

즉, 이전 코드를 다음과 같이 개선한 후,

anyX = 15.0;
double t = 0.1;

while (maxTrial-- > 0)
{
    double yPos = dfDrawFunc(anyX);
    pl.Point(anyX, orgDrawFunc(anyX), code);

    if (yPos.GetCloseToZeroSlope())
    {
        break;
    }
    else anyX -= (t * yPos);
}

결과를 보면, 훨씬 빨리 최솟값으로 수렴하는 것을 확인할 수 있습니다.

gradient_descent_3.png

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




수렴을 좀 더 빨리하기 위해, 데이터에 대한 전처리를 수행하는 과정이 바로 정규화입니다. 예를 들어 이전 글을 보면,

ML.NET 데이터 정규화
; https://www.sysnet.pe.kr/2/0/11922

click.csv 파일의 x 값 범위가 25 ~ 272에 해당하는데 이것을 z-score 정규화를 거치면 -1.7406785589738 ~ 1.94669368859505가 되어 수렴을 시작할 수 있는 랜덤 값 범위를 대폭 줄이게 됩니다.

참고로, 직관적으로 아시겠지만 ^^ 경사 하강법은,

경사 하강법
; https://ko.wikipedia.org/wiki/%EA%B2%BD%EC%82%AC_%ED%95%98%EA%B0%95%EB%B2%95

지역 근사해는 찾아도, 전역 근사해를 찾지 못할 수 있습니다. 아래의 그래프와 같은 상황들을 보면 이해가 되실 것입니다. ^^

gradient_descent_4.png

gradient_descent_5.png

이에 대한 보완으로 "확률 경사 하강법"과 "미니 배치법"이 있다고 하니 좀 더 자세한 사항은 "기초 수학으로 이해하는 머신러닝 알고리즘" 책을 보시면 되겠습니다. ^^




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 5/31/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 151  152  153  154  155  156  157  [158]  159  160  161  162  163  164  165  ...
NoWriterDateCnt.TitleFile(s)
1100정성태8/17/201128957.NET Framework: 236. SqlDbType - DateTime, DateTime2, DateTimeOffset의 차이점파일 다운로드1
1099정성태8/15/201128374오류 유형: 132. 어느 순간 갑자기 접속이 안 되는 TFS 서버
1098정성태8/15/201150371웹: 24. 네이버는 어떻게 로그인 처리를 할까요? [2]
1097정성태8/15/201121662.NET Framework: 235. 메서드의 메타 데이터 토큰 값으로 클래스를 찾아내는 방법
1096정성태8/15/201125807디버깅 기술: 42. Watson Bucket 정보를 이용한 CLR 응용 프로그램 예외 분석 - (2)
1095정성태8/14/201126292디버깅 기술: 41. Windbg - 비정상 종료된 닷넷 프로그램의 StackTrace에서 보이는 offset 값 의미
1094정성태8/14/201130615오류 유형: 131. Fiddler가 강제 종료된 경우, 웹 사이트 방문이 안되는 현상
1093정성태7/27/201124254오류 유형: 130. Unable to connect to the Microsoft Visual Studio Remote Debugging Monitor ... Access is denied.
1092정성태7/22/201126653Team Foundation Server: 46. 코드 이외의 파일에 대해 소스 제어에서 제외시키는 방법
1091정성태7/21/201125694개발 환경 구성: 128. WP7 Emulator 실행 시 audiodg.exe의 CPU 소모율 증가 [2]
1089정성태7/18/201131263.NET Framework: 234. 왜? Button 컨트롤에는 MouseDown/MouseUp 이벤트가 발생하지 않을까요?파일 다운로드1
1088정성태7/16/201124397.NET Framework: 233. Entity Framework 4.1 - 윈도우 폰 7에서의 CodeFirst 순환 참조 문제파일 다운로드1
1087정성태7/15/201127033.NET Framework: 232. Entity Framework 4.1 - CodeFirst 개체의 직렬화 시 순환 참조 해결하는 방법 - 두 번째 이야기파일 다운로드1
1086정성태7/14/201128477.NET Framework: 231. Entity Framework 4.1 - CodeFirst 개체의 직렬화 시 순환 참조 해결하는 방법 [1]파일 다운로드1
1085정성태7/14/201128899.NET Framework: 230. Entity Framework 4.1 - Code First + WCF 서비스 시 EndpointNotFoundException 오류 - 두 번째 이야기파일 다운로드1
1084정성태7/11/201134183.NET Framework: 229. SQL 서버 - DB 테이블의 데이터 변경에 대한 알림 처리 [4]파일 다운로드1
1083정성태7/11/201128232.NET Framework: 228. Entity Framework 4.1 - Code First + WCF 서비스 시 EndpointNotFoundException 오류
1082정성태7/10/201127817.NET Framework: 227. basicHttpBinding + 사용자 정의 인증 구현 [2]파일 다운로드1
1081정성태7/9/201127125VC++: 53. Windows 7에서 gcc.exe 실행 시 Access denied 오류 [2]
1080정성태7/8/201125611웹: 23. Sysnet 웹 사이트의 HTML5 변환 기록 - 두 번째 이야기파일 다운로드1
1079정성태7/6/201130038오류 유형: 129. Hyper-V + Realtek 랜카드가 설치된 시스템의 BSOD 현상 [2]
1078정성태7/5/201137618VC++: 52. Chromium 컴파일하는 방법 [2]
1077정성태6/24/201135217.NET Framework: 226. HttpWebRequest 타입의 HaveResponse 속성 이야기파일 다운로드1
1076정성태6/23/201129329오류 유형: 128. SQL Express - User Instance 옵션을 사용한 경우 발생하는 오류 메시지 유형 2가지
1075정성태6/21/201124964VS.NET IDE: 69. 윈폰 프로젝트에서 WCF 서비스 참조할 때 Reference.cs 파일이 비어있는 경우
1074정성태6/20/201125043.NET Framework: 225. 닷넷 네트워크 라이브러리의 트레이스 기능파일 다운로드1
... 151  152  153  154  155  156  157  [158]  159  160  161  162  163  164  165  ...