Microsoft MVP성태의 닷넷 이야기
Math: 57. C# - 해석학적 방법을 이용한 최소 자승법 [링크 복사], [링크+제목 복사],
조회: 23091
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)
(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 해석학적 방법을 이용한 최소 자승법

다음의 글에 보면,

최소자승법 이해와 다양한 활용예 (Least Square Method)
; https://darkpgmr.tistory.com/56

최소 자승법(최소 제곱법)의 풀이로 대수적 방법과 해석학적 방법이 있다고 하는데요. 대수적 방법은 지난번에 설명했으니, 이번엔 해석학적 방법을 알아보겠습니다. (보다 더 자세한 설명은 "기초 수학으로 이해하는 머신러닝 알고리즘" 책을 참고하시고 여기서는 간략하게 넘어가겠습니다.)

그러니까, 결국 중요한 것은 데이터를 근사하는 방정식의,

fθ(x) = θ0 + θ1x

매개변수 값(θ0, θ1)을 정하는 것입니다. 이를 위해 데이터와의 오차를 계산하는 목적함수에 대해,



각각의 매개변수(θ0, θ1)로 편미분한 도함수를 다음과 같이 정리할 수 있습니다.




도함수가 정해졌으니, 이제 목적함수의 최솟값을 구하기 위해 경사하강법을 사용할 수 있고,

C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

따라서 도함수의 부호에 따라 매개변수를 근사하는 식은 다음과 같이 정리가 됩니다.




끝났군요. ^^ 이제 위의 동작을 코드로 잘 옮겨주면 연산이 진행될수록 θ0, θ1 값들은 근사한 1차 방정식의 모습을 갖추게 될 것입니다.




말이 좀 어려운데, 사실 코드로 보면 그다지 어렵지 않습니다. ^^

using MathNet.Numerics.Random;
using Microsoft.ML;
using Microsoft.ML.Data;
using PLplot;
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML.Data;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        // 표준화
        var xyList = ctx.Data.CreateEnumerable<ClickData>(data, false).NormalizeZscore();

        // 매개변수 초기화
        double theta0 = SystemRandomSource.Default.NextDouble();
        double theta1 = SystemRandomSource.Default.NextDouble();

        // 예측 함수
        Func<double, double> f = (x) => theta0 + theta1 * x;

        // 목적 함수
        Func<double, double, double> errorFunc = (x, y) => Math.Pow((y - f(x)), 2);
        Func<IEnumerable<ClickData>, double> E = (list) => 0.5 * list.ForEach((e) => errorFunc(e.X, e.Y)).Sum();

        // 학습률
        double ETA = 1e-03;

        // 오차의 차분
        double diff = 1.0;

        // 갱신 횟수
        int count = 0;

        // 오차의 차분이 0.01 이하가 될 때까지 매개변수 갱신을 반복
        double error = E(xyList);

        while (diff > 1e-02)
        {
            // 갱신 결과를 임시 변수에 저장
            double tmp_theta0 = theta0 - ETA * xyList.ForEach((e) => f(e.X) - e.Y).Sum();
            double tmp_theta1 = theta1 - ETA * xyList.ForEach((e) => (f(e.X) - e.Y) * e.X).Sum();

            // 매개변수 갱신
            theta0 = tmp_theta0;
            theta1 = tmp_theta1;

            // 이전 회의 오차와의 차분을 계산
            double currentError = E(xyList);
            diff = error - currentError;
            error = currentError;

            // 로그 출력
            count++;
            Console.WriteLine($"{count,4:#} 회째: theta0 = {theta0,8:#.0000}, theta1 = {theta1,8:#.0000}, 차분 = {diff,8:#.0000}");
        }

        // 그래프 출력
        double[] xData = xyList.Select((elem) => elem.X).ToArray();
        double[] yData = xyList.Select((elem) => elem.Y).ToArray();
        DrawPlotChart(xData, yData, f);
    }
}

/* 출력 결과
   1 회째: theta0 =   9.3955, theta1 =   2.6899, 차분 = 76048.3710
   2 회째: theta0 =  17.7905, theta1 =   4.5057, 차분 = 73036.8555
   3 회째: theta0 =  26.0177, theta1 =   6.2851, 차분 = 70144.5960
...[생략]...
 384 회째: theta0 = 428.9669, theta1 =  93.4392, 차분 =    .0145
 385 회째: theta0 = 428.9706, theta1 =  93.4400, 차분 =    .0139
 386 회째: theta0 = 428.9742, theta1 =  93.4407, 차분 =    .0133
 387 회째: theta0 = 428.9777, theta1 =  93.4415, 차분 =    .0128
 388 회째: theta0 = 428.9812, theta1 =  93.4422, 차분 =    .0123
 389 회째: theta0 = 428.9845, theta1 =  93.4430, 차분 =    .0118
 390 회째: theta0 = 428.9878, theta1 =  93.4437, 차분 =    .0113
 391 회째: theta0 = 428.9911, theta1 =  93.4444, 차분 =    .0109
 392 회째: theta0 = 428.9943, theta1 =  93.4451, 차분 =    .0105
 393 회째: theta0 = 428.9974, theta1 =  93.4458, 차분 =    .0101
 394 회째: theta0 = 429.0004, theta1 =  93.4464, 차분 =    .0097
*/

출력된 그래프를 보면 잘 근사한 것을 확인할 수 있습니다.

lsm_gradient_descent_1.png

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




그러니까 위의 소스 코드는 "기초 수학으로 이해하는 머신러닝 알고리즘" 책의 파이썬 코드를,

math-for-ml / regression1_linear.py 
; https://github.com/wikibook/math-for-ml/blob/master/regression1_linear.py

C# 버전으로 변경했다고 보면 되겠습니다. ^^




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/31/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2019-06-11 12시04분
다음의 글에 그래프가 수렴하는 애니메이션을 확인할 수 있습니다. ^^

C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; http://www.sysnet.pe.kr/2/0/11936

--------------------------------

[KIER energy+AI] 07 - Gaussian Process
; https://www.youtube.com/watch?v=9vIPzpzfw-o
정성태

... 151  152  153  154  155  156  157  [158]  159  160  161  162  163  164  165  ...
NoWriterDateCnt.TitleFile(s)
1133정성태9/25/201135094VC++: 54. C++로 만든 WinRT 프로그램 [2]
1132정성태9/24/201174579Java: 9. 자바의 keytool.exe 사용법과 Tomcat의 SSL 통신 설정
1131정성태9/23/201130641Java: 8. 닷넷 개발자가 구현해 본 자바 웹 서비스 (2)
1130정성태9/23/201138876Java: 7. 닷넷 개발자가 구현해 본 자바 웹 서비스 (1)파일 다운로드2
1129정성태9/22/201130397개발 환경 구성: 130. Hyper-V에 MS-DOS VM 만드는 방법 - MSDN 구독자 대상 [3]
1128정성태9/20/201130691오류 유형: 137. KB2449742 보안 업데이트로 인한 충돌 문제 해결 - 두 번째 이야기
1127정성태9/19/201134576Java: 6. Java에서 MySQL 사용 [2]
1126정성태9/18/201129769Math: 3. "유클리드 호제법"과 "Bezout's identity" 구현 코드(C#)파일 다운로드1
1125정성태9/17/201127447Windows: 54. Windows 8 개발자 Preview를 사용해 보고... [2]
1124정성태9/17/201127813.NET Framework: 240. System.Collections.ArrayList가 .NET 4.5에서 지원이 안된다??? [2]
1123정성태9/17/201166695Windows: 53. 2가지 모드의 Internet Explorer 10과 ActiveX [6]
1122정성태9/16/201134331Windows: 52. 새롭게 지원되는 WinRT 응용 프로그램 [7]
1121정성태9/12/201129106Java: 5. WTP 내에서 서블릿을 실행하는 환경
1120정성태9/11/201129087.NET Framework: 239. IHttpHandler.IsReusable 속성 이야기파일 다운로드1
1119정성태9/11/201128062Java: 4. 이클립스에 WTP SDK가 설치되지 않는다면? [2]
1118정성태9/11/201139972Java: 3. 이클립스에서 서블릿 디버깅하는 방법 [4]
1117정성태9/9/201127077제니퍼 .NET: 17. 제니퍼 닷넷 적용 사례 (2) - 웹 애플리케이션 hang의 원인을 알려주다.
1116정성태9/8/201158654Java: 2. 자바에서 "Microsoft SQL Server JDBC Driver" 사용하는 방법
1115정성태9/4/201131736Java: 1. 닷넷 개발자가 처음 실습해 본 서블릿
1114정성태9/4/201136273Math: 2. "Zhang Suen 알고리즘(세선화, Thinning/Skeletonization)"의 C# 버전 [4]파일 다운로드1
1113정성태9/2/201135878개발 환경 구성: 129. Hyper-V에 CentOS 설치하기
1112정성태9/2/201152526Linux: 1. 리눅스 <-> 윈도우 원격 접속 프로그램 사용 [3]
1111정성태8/29/201126704제니퍼 .NET: 16. 적용 사례 (1) - DB Connection Pooling을 사용하지 않았을 때의 성능 저하를 알려주다. [1]
1110정성태8/26/201128284오류 유형: 136. RDP 접속이 불연속적으로 끊기는 문제
1109정성태8/26/201131121오류 유형: 135. 어느 순간 Active Directory 접속이 안되는 문제
1108정성태8/22/201132068오류 유형: 134. OLE/COM Object Viewer - DllRegisterServer in IVIEWERS.DLL failed. [1]
... 151  152  153  154  155  156  157  [158]  159  160  161  162  163  164  165  ...