Microsoft MVP성태의 닷넷 이야기
Math: 57. C# - 해석학적 방법을 이용한 최소 자승법 [링크 복사], [링크+제목 복사],
조회: 23028
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)
(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 해석학적 방법을 이용한 최소 자승법

다음의 글에 보면,

최소자승법 이해와 다양한 활용예 (Least Square Method)
; https://darkpgmr.tistory.com/56

최소 자승법(최소 제곱법)의 풀이로 대수적 방법과 해석학적 방법이 있다고 하는데요. 대수적 방법은 지난번에 설명했으니, 이번엔 해석학적 방법을 알아보겠습니다. (보다 더 자세한 설명은 "기초 수학으로 이해하는 머신러닝 알고리즘" 책을 참고하시고 여기서는 간략하게 넘어가겠습니다.)

그러니까, 결국 중요한 것은 데이터를 근사하는 방정식의,

fθ(x) = θ0 + θ1x

매개변수 값(θ0, θ1)을 정하는 것입니다. 이를 위해 데이터와의 오차를 계산하는 목적함수에 대해,



각각의 매개변수(θ0, θ1)로 편미분한 도함수를 다음과 같이 정리할 수 있습니다.




도함수가 정해졌으니, 이제 목적함수의 최솟값을 구하기 위해 경사하강법을 사용할 수 있고,

C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

따라서 도함수의 부호에 따라 매개변수를 근사하는 식은 다음과 같이 정리가 됩니다.




끝났군요. ^^ 이제 위의 동작을 코드로 잘 옮겨주면 연산이 진행될수록 θ0, θ1 값들은 근사한 1차 방정식의 모습을 갖추게 될 것입니다.




말이 좀 어려운데, 사실 코드로 보면 그다지 어렵지 않습니다. ^^

using MathNet.Numerics.Random;
using Microsoft.ML;
using Microsoft.ML.Data;
using PLplot;
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML.Data;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        // 표준화
        var xyList = ctx.Data.CreateEnumerable<ClickData>(data, false).NormalizeZscore();

        // 매개변수 초기화
        double theta0 = SystemRandomSource.Default.NextDouble();
        double theta1 = SystemRandomSource.Default.NextDouble();

        // 예측 함수
        Func<double, double> f = (x) => theta0 + theta1 * x;

        // 목적 함수
        Func<double, double, double> errorFunc = (x, y) => Math.Pow((y - f(x)), 2);
        Func<IEnumerable<ClickData>, double> E = (list) => 0.5 * list.ForEach((e) => errorFunc(e.X, e.Y)).Sum();

        // 학습률
        double ETA = 1e-03;

        // 오차의 차분
        double diff = 1.0;

        // 갱신 횟수
        int count = 0;

        // 오차의 차분이 0.01 이하가 될 때까지 매개변수 갱신을 반복
        double error = E(xyList);

        while (diff > 1e-02)
        {
            // 갱신 결과를 임시 변수에 저장
            double tmp_theta0 = theta0 - ETA * xyList.ForEach((e) => f(e.X) - e.Y).Sum();
            double tmp_theta1 = theta1 - ETA * xyList.ForEach((e) => (f(e.X) - e.Y) * e.X).Sum();

            // 매개변수 갱신
            theta0 = tmp_theta0;
            theta1 = tmp_theta1;

            // 이전 회의 오차와의 차분을 계산
            double currentError = E(xyList);
            diff = error - currentError;
            error = currentError;

            // 로그 출력
            count++;
            Console.WriteLine($"{count,4:#} 회째: theta0 = {theta0,8:#.0000}, theta1 = {theta1,8:#.0000}, 차분 = {diff,8:#.0000}");
        }

        // 그래프 출력
        double[] xData = xyList.Select((elem) => elem.X).ToArray();
        double[] yData = xyList.Select((elem) => elem.Y).ToArray();
        DrawPlotChart(xData, yData, f);
    }
}

/* 출력 결과
   1 회째: theta0 =   9.3955, theta1 =   2.6899, 차분 = 76048.3710
   2 회째: theta0 =  17.7905, theta1 =   4.5057, 차분 = 73036.8555
   3 회째: theta0 =  26.0177, theta1 =   6.2851, 차분 = 70144.5960
...[생략]...
 384 회째: theta0 = 428.9669, theta1 =  93.4392, 차분 =    .0145
 385 회째: theta0 = 428.9706, theta1 =  93.4400, 차분 =    .0139
 386 회째: theta0 = 428.9742, theta1 =  93.4407, 차분 =    .0133
 387 회째: theta0 = 428.9777, theta1 =  93.4415, 차분 =    .0128
 388 회째: theta0 = 428.9812, theta1 =  93.4422, 차분 =    .0123
 389 회째: theta0 = 428.9845, theta1 =  93.4430, 차분 =    .0118
 390 회째: theta0 = 428.9878, theta1 =  93.4437, 차분 =    .0113
 391 회째: theta0 = 428.9911, theta1 =  93.4444, 차분 =    .0109
 392 회째: theta0 = 428.9943, theta1 =  93.4451, 차분 =    .0105
 393 회째: theta0 = 428.9974, theta1 =  93.4458, 차분 =    .0101
 394 회째: theta0 = 429.0004, theta1 =  93.4464, 차분 =    .0097
*/

출력된 그래프를 보면 잘 근사한 것을 확인할 수 있습니다.

lsm_gradient_descent_1.png

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




그러니까 위의 소스 코드는 "기초 수학으로 이해하는 머신러닝 알고리즘" 책의 파이썬 코드를,

math-for-ml / regression1_linear.py 
; https://github.com/wikibook/math-for-ml/blob/master/regression1_linear.py

C# 버전으로 변경했다고 보면 되겠습니다. ^^




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/31/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2019-06-11 12시04분
다음의 글에 그래프가 수렴하는 애니메이션을 확인할 수 있습니다. ^^

C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; http://www.sysnet.pe.kr/2/0/11936

--------------------------------

[KIER energy+AI] 07 - Gaussian Process
; https://www.youtube.com/watch?v=9vIPzpzfw-o
정성태

... 181  182  183  [184]  185  186  187  188  189  190  191  192  193  194  195  ...
NoWriterDateCnt.TitleFile(s)
411정성태12/16/200620772오류 유형: 21. TFS SP1 설치 관련 오류 (2) - KB919156 패치 이후 TFS 접근 문제
410정성태12/16/200622015오류 유형: 20. TFS SP1 설치 관련 오류 (1) - KB919156 패치
408정성태12/10/200624340Windows: 7. USB 드라이브 내용 암호화
407정성태12/10/200621738오류 유형: 19. Vista 에서의 VS.NET 2005 로 개발한 어셈블리에 대한 서명 확인 오류
406정성태12/10/200626571Windows: 6. IE 7 검색 공급자 - 영한 사전
403정성태12/6/200633722Windows: 5. Vista 와 웹 인증 등록 서비스의 문제 [5]
402정성태12/11/200624708Windows: 4. Vista 설치 후기 [1]
409정성태12/11/200628715    답변글 Windows: 4.1. Vista 설치 후기 - 두 번째 이야기 [3]
396정성태2/13/200731272오류 유형: 18. "Automatic Updates" 서비스 CPU 100% 점유 현상
393정성태11/8/200620865오류 유형: 17. Unable to start debugging - The binding handle is invalid.
371정성태10/23/200620123오류 유형: 16. STS Communication failed.
370정성태11/12/200623954.NET Framework: 75. Windows CardSpace 이야기 (이 글의 내용은 재작성되어질 예정입니다.)
375정성태10/25/200625845    답변글 .NET Framework: 75.1. 개인 발행 카드에 대한 Microsoft 예제 실습(이 글의 내용은 재작성되어질 예정입니다.)
376정성태10/27/200625556    답변글 .NET Framework: 75.2. "Windows CardSpace"와 "인증서 서비스"의 만남(이 글의 내용은 재작성되어질 예정입니다.)
377정성태10/26/200625412    답변글 .NET Framework: 75.3. Managed Card 발행에 대한 Microsoft 예제 실습 (1) - CardWriter (이 글의 내용은 재작성되어질 예정입니다.)
385정성태11/6/200627818    답변글 .NET Framework: 75.4. Managed Card 발행에 대한 Microsoft 예제 실습 (2) - STS 구현 (이 글의 내용은 재작성되어질 예정입니다.) [7]
387정성태11/2/200628666    답변글 .NET Framework: 75.5. Windows CardSpace와 SYSNET 사이트의 만남 (이 글의 내용은 재작성되어질 예정입니다.) [1]
397정성태11/11/200626239    답변글 .NET Framework: 75.6. CardWriter.csproj와 함께 알아보는 인증서 식별 방법(이 글의 내용은 재작성되어질 예정입니다.)
398정성태11/12/200624681    답변글 .NET Framework: 75.7. 카드에 암호 거는 방법(이 글의 내용은 재작성되어질 예정입니다.)
399정성태11/12/200626877    답변글 .NET Framework: 75.8. 인증서/스마트 카드에 기반한 Managed Card - STS 구현(이 글의 내용은 재작성되어질 예정입니다.) [5]
369정성태10/22/200622312오류 유형: 15. 자동 업데이트 실패
367정성태10/22/200638210Windows: 3. IIS 7.0 다중 바인딩 설정하는 방법 [1]
365정성태10/21/200621645Windows: 2. 서버(build 5600)에 IIS 7.0 서비스와 .NET 3.0 설치 방법
359정성태10/17/200617874오류 유형: 14. VS.NET 빌드 오류 - FxCopCmd.exe returned error code 65.
358정성태10/17/200623165오류 유형: 13. WSE 3.0 서비스 관련 WSE101 오류 / Destination Unreachable
357정성태12/1/200625410.NET Framework: 74. WCF 이야기 [4]
... 181  182  183  [184]  185  186  187  188  189  190  191  192  193  194  195  ...