Microsoft MVP성태의 닷넷 이야기
Math: 57. C# - 해석학적 방법을 이용한 최소 자승법 [링크 복사], [링크+제목 복사],
조회: 21282
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 2개 있습니다.)
(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 해석학적 방법을 이용한 최소 자승법

다음의 글에 보면,

최소자승법 이해와 다양한 활용예 (Least Square Method)
; https://darkpgmr.tistory.com/56

최소 자승법(최소 제곱법)의 풀이로 대수적 방법과 해석학적 방법이 있다고 하는데요. 대수적 방법은 지난번에 설명했으니, 이번엔 해석학적 방법을 알아보겠습니다. (보다 더 자세한 설명은 "기초 수학으로 이해하는 머신러닝 알고리즘" 책을 참고하시고 여기서는 간략하게 넘어가겠습니다.)

그러니까, 결국 중요한 것은 데이터를 근사하는 방정식의,

fθ(x) = θ0 + θ1x

매개변수 값(θ0, θ1)을 정하는 것입니다. 이를 위해 데이터와의 오차를 계산하는 목적함수에 대해,



각각의 매개변수(θ0, θ1)로 편미분한 도함수를 다음과 같이 정리할 수 있습니다.




도함수가 정해졌으니, 이제 목적함수의 최솟값을 구하기 위해 경사하강법을 사용할 수 있고,

C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

따라서 도함수의 부호에 따라 매개변수를 근사하는 식은 다음과 같이 정리가 됩니다.




끝났군요. ^^ 이제 위의 동작을 코드로 잘 옮겨주면 연산이 진행될수록 θ0, θ1 값들은 근사한 1차 방정식의 모습을 갖추게 될 것입니다.




말이 좀 어려운데, 사실 코드로 보면 그다지 어렵지 않습니다. ^^

using MathNet.Numerics.Random;
using Microsoft.ML;
using Microsoft.ML.Data;
using PLplot;
using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.ML.Data;

class Program
{
    static void Main(string[] args)
    {
        MLContext ctx = new MLContext();

        IDataView data = ctx.Data.LoadFromTextFile<ClickData>("click.csv", separatorChar: ',', hasHeader: true);

        // 표준화
        var xyList = ctx.Data.CreateEnumerable<ClickData>(data, false).NormalizeZscore();

        // 매개변수 초기화
        double theta0 = SystemRandomSource.Default.NextDouble();
        double theta1 = SystemRandomSource.Default.NextDouble();

        // 예측 함수
        Func<double, double> f = (x) => theta0 + theta1 * x;

        // 목적 함수
        Func<double, double, double> errorFunc = (x, y) => Math.Pow((y - f(x)), 2);
        Func<IEnumerable<ClickData>, double> E = (list) => 0.5 * list.ForEach((e) => errorFunc(e.X, e.Y)).Sum();

        // 학습률
        double ETA = 1e-03;

        // 오차의 차분
        double diff = 1.0;

        // 갱신 횟수
        int count = 0;

        // 오차의 차분이 0.01 이하가 될 때까지 매개변수 갱신을 반복
        double error = E(xyList);

        while (diff > 1e-02)
        {
            // 갱신 결과를 임시 변수에 저장
            double tmp_theta0 = theta0 - ETA * xyList.ForEach((e) => f(e.X) - e.Y).Sum();
            double tmp_theta1 = theta1 - ETA * xyList.ForEach((e) => (f(e.X) - e.Y) * e.X).Sum();

            // 매개변수 갱신
            theta0 = tmp_theta0;
            theta1 = tmp_theta1;

            // 이전 회의 오차와의 차분을 계산
            double currentError = E(xyList);
            diff = error - currentError;
            error = currentError;

            // 로그 출력
            count++;
            Console.WriteLine($"{count,4:#} 회째: theta0 = {theta0,8:#.0000}, theta1 = {theta1,8:#.0000}, 차분 = {diff,8:#.0000}");
        }

        // 그래프 출력
        double[] xData = xyList.Select((elem) => elem.X).ToArray();
        double[] yData = xyList.Select((elem) => elem.Y).ToArray();
        DrawPlotChart(xData, yData, f);
    }
}

/* 출력 결과
   1 회째: theta0 =   9.3955, theta1 =   2.6899, 차분 = 76048.3710
   2 회째: theta0 =  17.7905, theta1 =   4.5057, 차분 = 73036.8555
   3 회째: theta0 =  26.0177, theta1 =   6.2851, 차분 = 70144.5960
...[생략]...
 384 회째: theta0 = 428.9669, theta1 =  93.4392, 차분 =    .0145
 385 회째: theta0 = 428.9706, theta1 =  93.4400, 차분 =    .0139
 386 회째: theta0 = 428.9742, theta1 =  93.4407, 차분 =    .0133
 387 회째: theta0 = 428.9777, theta1 =  93.4415, 차분 =    .0128
 388 회째: theta0 = 428.9812, theta1 =  93.4422, 차분 =    .0123
 389 회째: theta0 = 428.9845, theta1 =  93.4430, 차분 =    .0118
 390 회째: theta0 = 428.9878, theta1 =  93.4437, 차분 =    .0113
 391 회째: theta0 = 428.9911, theta1 =  93.4444, 차분 =    .0109
 392 회째: theta0 = 428.9943, theta1 =  93.4451, 차분 =    .0105
 393 회째: theta0 = 428.9974, theta1 =  93.4458, 차분 =    .0101
 394 회째: theta0 = 429.0004, theta1 =  93.4464, 차분 =    .0097
*/

출력된 그래프를 보면 잘 근사한 것을 확인할 수 있습니다.

lsm_gradient_descent_1.png

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




그러니까 위의 소스 코드는 "기초 수학으로 이해하는 머신러닝 알고리즘" 책의 파이썬 코드를,

math-for-ml / regression1_linear.py 
; https://github.com/wikibook/math-for-ml/blob/master/regression1_linear.py

C# 버전으로 변경했다고 보면 되겠습니다. ^^




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 5/31/2019]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 



2019-06-11 12시04분
다음의 글에 그래프가 수렴하는 애니메이션을 확인할 수 있습니다. ^^

C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; http://www.sysnet.pe.kr/2/0/11936

--------------------------------

[KIER energy+AI] 07 - Gaussian Process
; https://www.youtube.com/watch?v=9vIPzpzfw-o
정성태

... 76  77  78  79  80  81  82  83  84  85  [86]  87  88  89  90  ...
NoWriterDateCnt.TitleFile(s)
11783정성태11/18/201818224오류 유형: 504. 윈도우 환경에서 docker가 설치된 컴퓨터 간의 ping IP 주소 풀이 오류
11782정성태11/18/201817392Windows: 152. 윈도우 10에서 사라진 "Adapters and Bindings" 네트워크 우선순위 조정 기능 - 두 번째 이야기
11781정성태11/17/201820752개발 환경 구성: 422. SFML.NET 라이브러리 설정 방법 [1]파일 다운로드1
11780정성태11/17/201821744오류 유형: 503. vcpkg install bzip2 빌드 에러 - "Error: Building package bzip2:x86-windows failed with: BUILD_FAILED"
11779정성태11/17/201822643개발 환경 구성: 421. vcpkg 업데이트 [1]
11778정성태11/14/201820003.NET Framework: 803. UWP 앱에서 한 컴퓨터(localhost, 127.0.0.1) 내에서의 소켓 연결
11777정성태11/13/201820445오류 유형: 502. Your project does not reference "..." framework. Add a reference to "..." in the "TargetFrameworks" property of your project file and then re-run NuGet restore.
11776정성태11/13/201818459.NET Framework: 802. Windows에 로그인한 계정이 마이크로소프트의 계정인지, 로컬 계정인지 알아내는 방법
11775정성태11/13/201820305Graphics: 31. .NET으로 구현하는 OpenGL (6) - Texturing파일 다운로드1
11774정성태11/8/201818704Graphics: 30. .NET으로 구현하는 OpenGL (4), (5) - Shader파일 다운로드1
11773정성태11/7/201818398Graphics: 29. .NET으로 구현하는 OpenGL (3) - Index Buffer파일 다운로드1
11772정성태11/6/201820331Graphics: 28. .NET으로 구현하는 OpenGL (2) - VAO, VBO파일 다운로드1
11771정성태11/5/201819385사물인터넷: 56. Audio Jack 커넥터의 IR 적외선 송신기 - 두 번째 이야기 [1]
11770정성태11/5/201827681Graphics: 27. .NET으로 구현하는 OpenGL (1) - OpenGL.Net 라이브러리 [3]파일 다운로드1
11769정성태11/5/201818655오류 유형: 501. 프로젝트 msbuild Publish 후 connectionStrings의 문자열이 $(ReplacableToken_...)로 바뀌는 문제
11768정성태11/2/201819145.NET Framework: 801. SOIL(Simple OpenGL Image Library) - Native DLL 및 .NET DLL 제공
11767정성태11/1/201820082사물인터넷: 55. New NodeMcu v3(ESP8266)의 IR LED (적외선 송신) 제어파일 다운로드1
11766정성태10/31/201822107사물인터넷: 54. 아두이노 환경에서의 JSON 파서(ArduinoJson) 사용법
11765정성태10/26/201819042개발 환경 구성: 420. Visual Studio Code - Arduino Board Manager를 이용한 사용자 정의 보드 선택
11764정성태10/26/201823898개발 환경 구성: 419. MIT 라이선스로 무료 공개된 Detours API 후킹 라이브러리 [2]
11763정성태10/25/201820945사물인터넷: 53. New NodeMcu v3(ESP8266)의 https 통신
11762정성태10/25/201821365사물인터넷: 52. New NodeMCU v3(ESP8266)의 http 통신파일 다운로드1
11761정성태10/25/201821300Graphics: 26. 임의 축을 기반으로 3D 벡터 회전파일 다운로드1
11760정성태10/24/201816738개발 환경 구성: 418. Azure - Runbook 내에서 또 다른 Runbook 스크립트를 실행
11759정성태10/24/201818325개발 환경 구성: 417. Azure - Runbook에서 사용할 수 있는 다양한 메서드를 위한 부가 Module 추가
11758정성태10/23/201820629.NET Framework: 800. C# - Azure REST API 사용을 위한 인증 획득 [3]파일 다운로드1
... 76  77  78  79  80  81  82  83  84  85  [86]  87  88  89  90  ...