Microsoft MVP성태의 닷넷 이야기
Math: 60. C# - 로지스틱 회귀를 이용한 분류 [링크 복사], [링크+제목 복사],
조회: 19876
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 6개 있습니다.)
Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

Math: 60. C# - 로지스틱 회귀를 이용한 분류
; https://www.sysnet.pe.kr/2/0/11955

Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류
; https://www.sysnet.pe.kr/2/0/11962

Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화
; https://www.sysnet.pe.kr/2/0/11966

Math: 63. C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

Math: 64. C# - 3층 구조의 신경망(분류)
; https://www.sysnet.pe.kr/2/0/11981




C# - 로지스틱 회귀를 이용한 분류

이번에도,

기초 수학으로 이해하는 머신러닝 알고리즘
; https://wikibook.co.kr/math-for-ml/

지난번의 퍼셉트론 분류에 이어,

C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

책에서 공개한 파이썬 버전의 로지스틱 회귀를,

wikibook/math-for-ml
; https://github.com/wikibook/math-for-ml/blob/master/classification2_logistic_regression.py

C# 버전으로 포팅해 보겠습니다. ^^




우선 예측 함수로서의 시그모이드는,



C#으로 이렇게 정의할 수 있습니다.

Func<Vector<double>, Vector<double>, double> f = (x, t) =>
                1 / (1 + Math.Exp(-x * theta));

재미있는 것은 가능도 함수(책에서는 우도 함수)가,



제곱 계산 때문에 0으로 빠르게 수렴하는 문제를 완화하기 위해 대수 우도 함수를 정의하는데,



이것을 미분해 얻은 갱신식이 결국,



웨이트 벡터 갱신식최소 자승법의 경우와 유사하다는 점입니다. 정말이지 수학 분야는 너무나 신비롭습니다. ^^

어쨌든 책에서는 위의 미분 함수에서 부호를 밖으로 빼내 다음과 같이 정리해서 사용합니다.



C# 코드로는 이 부분을 다음과 같이 바꿀 수 있습니다.

var fResult = imgList.ForEach((elem) => f(elem.AsVectorX(), theta) - elem.Y).ToVector();
theta = theta - ETA * fResult * X;

암튼, 이렇게 해서 classification2_logistic_regression.py 소스 코드를 C#으로 변환하면 (각종 확장 함수의 도움을 이용해 ^^;) 대충 이렇게 정리할 수 있습니다.

static void Main(string[] args)
{
    MLContext ctx = new MLContext();

    string inputFileName = "images2.csv";
    IDataView data = ctx.Data.LoadFromTextFile<ImageRect>(inputFileName, separatorChar: ',', hasHeader: true);

    // 매개변수 초기화
    Vector<double> theta = Vector<double>.Build.Dense(SystemRandomSource.Default.NextDoubles(3));

    var dataList = ctx.Data.CreateEnumerable<ImageRect>(data, false);
    var statInfo = dataList.GetStatisticsInfo();

    // 표준화
    var imgList = dataList.NormalizeZscore(statInfo);
    Matrix<double> X = imgList.ToMatrix();

    Console.WriteLine(X);

    // 시그모이드 함수
    Func<Vector<double>, Vector<double>, double> f = (x, t) =>
                    1 / (1 + Math.Exp(-x * theta));

    // 학습률
    double ETA = 1e-3;

    // 반복 횟수
    int epoch = 5000;

    // 갱신 횟수
    for (int i = 0; i < epoch; i ++)
    {
        var fResult = imgList.ForEach((elem) => f(elem.AsVectorX(), theta) - elem.Y).ToVector();
        theta = theta - ETA * fResult * X;

        // Console.WriteLine(theta);
    }

    Console.WriteLine($"theta = {theta}");

    OutputChart(imgList, theta);
}

그런대로 좀 비슷하죠?!!! ^^;

(첨부 파일은 이 글의 소스 코드를 포함합니다.)




참고로, 분류 함수의 출력 그래프는 다음과 같고,

logistic_regression_1.png

지난 퍼셉트론 글에서 분류하지 못했던 "x2의 값이 300 이상인 경우 -1, 미만인 경우 1의 데이터"에 대해서도 다음과 같이 잘 분류를 하는 것을 볼 수 있습니다. ^^

logistic_regression_2.png




시간 되시면 다음의 글도 읽어보시고. ^^

Sigmoid function (시그모이드 함수)
; https://m.blog.naver.com/2feelus/220363930362

Mathpresso 머신 러닝 스터디 - 3. 오차를 다루는 방법_1
; https://medium.com/qandastudy/mathpresso-%EB%A8%B8%EC%8B%A0-%EB%9F%AC%EB%8B%9D-%EC%8A%A4%ED%84%B0%EB%94%94-3-%EC%98%A4%EC%B0%A8%EB%A5%BC-%EB%8B%A4%EB%A3%A8%EB%8A%94-%EB%B0%A9%EB%B2%95-7d1fb64ea0cf

R을 이용한 회귀분석 (이부일 | 인사이트마이닝)
; https://www.youtube.com/watch?v=fCF1SXix10Y





[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 4/16/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 91  92  93  [94]  95  96  97  98  99  100  101  102  103  104  105  ...
NoWriterDateCnt.TitleFile(s)
11585정성태7/5/201818425Math: 36. GeoGebra 기하 (13) - 삼각형의 외심과 외접하는 원파일 다운로드1
11584정성태7/5/201818359Math: 35. GeoGebra 기하 (12) - 삼각형의 내심과 내접하는 원파일 다운로드1
11583정성태7/5/201818272.NET Framework: 785. public으로 노출되지 않은 다른 어셈블리의 delegate 인스턴스를 Reflection으로 생성하는 방법파일 다운로드1
11582정성태7/5/201824779.NET Framework: 784. C# - 제네릭 인자를 가진 타입을 생성하는 방법 [1]파일 다운로드1
11581정성태7/4/201821499Math: 34. GeoGebra 기하 (11) - 3대 작도 불능 문제의 하나인 임의 각의 3등분파일 다운로드1
11580정성태7/4/201818285Math: 33. GeoGebra 기하 (10) - 직각의 3등분파일 다운로드1
11579정성태7/4/201817371Math: 32. GeoGebra 기하 (9) - 임의의 선분을 한 변으로 갖는 정삼각형파일 다운로드1
11578정성태7/3/201817493Math: 31. GeoGebra 기하 (8) - 호(Arc)의 이등분파일 다운로드1
11577정성태7/3/201817477Math: 30. GeoGebra 기하 (7) - 각의 이등분파일 다운로드1
11576정성태7/3/201819702Math: 29. GeoGebra 기하 (6) - 대수의 4칙 연산파일 다운로드1
11575정성태7/2/201820133Math: 28. GeoGebra 기하 (5) - 선분을 n 등분하는 방법파일 다운로드1
11574정성태7/2/201818602Math: 27. GeoGebra 기하 (4) - 선분을 n 배 늘이는 방법파일 다운로드1
11573정성태7/2/201817925Math: 26. GeoGebra 기하 (3) - 평행선
11572정성태7/1/201817228.NET Framework: 783. C# 컴파일러가 허용하지 않는 (유효한) 코드를 컴파일해 테스트하는 방법
11571정성태7/1/201818678.NET Framework: 782. C# - JIRA에 등록된 Project의 Version 항목 추가하는 방법파일 다운로드1
11570정성태7/1/201818900Math: 25. GeoGebra 기하 (2) - 임의의 선분과 특정 점을 지나는 수직선파일 다운로드1
11569정성태7/1/201818079Math: 24. GeoGebra 기하 (1) - 수직 이등분선파일 다운로드1
11568정성태7/1/201830306Math: 23. GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램 [1]
11567정성태6/28/201819632.NET Framework: 781. C# - OpenCvSharp 사용 시 포인터를 이용한 속도 향상파일 다운로드1
11566정성태6/28/201825256.NET Framework: 780. C# - JIRA REST API 사용 정리 (1) Basic 인증 [4]파일 다운로드1
11565정성태6/28/201822186.NET Framework: 779. C# 7.3에서 enum을 boxing 없이 int로 변환하기 - 세 번째 이야기파일 다운로드1
11564정성태6/27/201820626.NET Framework: 778. (Unity가 사용하는) 모노 런타임의 __makeref 오류
11563정성태6/27/201819443개발 환경 구성: 386. .NET Framework Native compiler 프리뷰 버전 사용법 [2]
11562정성태6/26/201818889개발 환경 구성: 385. 레지스트리에 등록된 원격지 스크립트 COM 객체 실행 방법
11561정성태6/26/201830228.NET Framework: 777. UI 요소의 접근은 반드시 그 UI를 만든 스레드에서! [8]파일 다운로드1
11560정성태6/25/201821575.NET Framework: 776. C# 7.3 - 초기화 식에서 변수 사용 가능(expression variables in initializers)파일 다운로드1
... 91  92  93  [94]  95  96  97  98  99  100  101  102  103  104  105  ...