Microsoft MVP성태의 닷넷 이야기
Math: 60. C# - 로지스틱 회귀를 이용한 분류 [링크 복사], [링크+제목 복사],
조회: 19749
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일

(시리즈 글이 6개 있습니다.)
Math: 59. C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

Math: 60. C# - 로지스틱 회귀를 이용한 분류
; https://www.sysnet.pe.kr/2/0/11955

Math: 61. C# - 로지스틱 회귀를 이용한 선형분리 불가능 문제의 분류
; https://www.sysnet.pe.kr/2/0/11962

Math: 62. 활성화 함수에 따른 뉴런의 출력을 그리드 맵으로 시각화
; https://www.sysnet.pe.kr/2/0/11966

Math: 63. C# - 3층 구조의 신경망
; https://www.sysnet.pe.kr/2/0/11969

Math: 64. C# - 3층 구조의 신경망(분류)
; https://www.sysnet.pe.kr/2/0/11981




C# - 로지스틱 회귀를 이용한 분류

이번에도,

기초 수학으로 이해하는 머신러닝 알고리즘
; https://wikibook.co.kr/math-for-ml/

지난번의 퍼셉트론 분류에 이어,

C# - 웨이트 벡터 갱신식을 이용한 퍼셉트론 분류
; https://www.sysnet.pe.kr/2/0/11938

책에서 공개한 파이썬 버전의 로지스틱 회귀를,

wikibook/math-for-ml
; https://github.com/wikibook/math-for-ml/blob/master/classification2_logistic_regression.py

C# 버전으로 포팅해 보겠습니다. ^^




우선 예측 함수로서의 시그모이드는,



C#으로 이렇게 정의할 수 있습니다.

Func<Vector<double>, Vector<double>, double> f = (x, t) =>
                1 / (1 + Math.Exp(-x * theta));

재미있는 것은 가능도 함수(책에서는 우도 함수)가,



제곱 계산 때문에 0으로 빠르게 수렴하는 문제를 완화하기 위해 대수 우도 함수를 정의하는데,



이것을 미분해 얻은 갱신식이 결국,



웨이트 벡터 갱신식최소 자승법의 경우와 유사하다는 점입니다. 정말이지 수학 분야는 너무나 신비롭습니다. ^^

어쨌든 책에서는 위의 미분 함수에서 부호를 밖으로 빼내 다음과 같이 정리해서 사용합니다.



C# 코드로는 이 부분을 다음과 같이 바꿀 수 있습니다.

var fResult = imgList.ForEach((elem) => f(elem.AsVectorX(), theta) - elem.Y).ToVector();
theta = theta - ETA * fResult * X;

암튼, 이렇게 해서 classification2_logistic_regression.py 소스 코드를 C#으로 변환하면 (각종 확장 함수의 도움을 이용해 ^^;) 대충 이렇게 정리할 수 있습니다.

static void Main(string[] args)
{
    MLContext ctx = new MLContext();

    string inputFileName = "images2.csv";
    IDataView data = ctx.Data.LoadFromTextFile<ImageRect>(inputFileName, separatorChar: ',', hasHeader: true);

    // 매개변수 초기화
    Vector<double> theta = Vector<double>.Build.Dense(SystemRandomSource.Default.NextDoubles(3));

    var dataList = ctx.Data.CreateEnumerable<ImageRect>(data, false);
    var statInfo = dataList.GetStatisticsInfo();

    // 표준화
    var imgList = dataList.NormalizeZscore(statInfo);
    Matrix<double> X = imgList.ToMatrix();

    Console.WriteLine(X);

    // 시그모이드 함수
    Func<Vector<double>, Vector<double>, double> f = (x, t) =>
                    1 / (1 + Math.Exp(-x * theta));

    // 학습률
    double ETA = 1e-3;

    // 반복 횟수
    int epoch = 5000;

    // 갱신 횟수
    for (int i = 0; i < epoch; i ++)
    {
        var fResult = imgList.ForEach((elem) => f(elem.AsVectorX(), theta) - elem.Y).ToVector();
        theta = theta - ETA * fResult * X;

        // Console.WriteLine(theta);
    }

    Console.WriteLine($"theta = {theta}");

    OutputChart(imgList, theta);
}

그런대로 좀 비슷하죠?!!! ^^;

(첨부 파일은 이 글의 소스 코드를 포함합니다.)




참고로, 분류 함수의 출력 그래프는 다음과 같고,

logistic_regression_1.png

지난 퍼셉트론 글에서 분류하지 못했던 "x2의 값이 300 이상인 경우 -1, 미만인 경우 1의 데이터"에 대해서도 다음과 같이 잘 분류를 하는 것을 볼 수 있습니다. ^^

logistic_regression_2.png




시간 되시면 다음의 글도 읽어보시고. ^^

Sigmoid function (시그모이드 함수)
; https://m.blog.naver.com/2feelus/220363930362

Mathpresso 머신 러닝 스터디 - 3. 오차를 다루는 방법_1
; https://medium.com/qandastudy/mathpresso-%EB%A8%B8%EC%8B%A0-%EB%9F%AC%EB%8B%9D-%EC%8A%A4%ED%84%B0%EB%94%94-3-%EC%98%A4%EC%B0%A8%EB%A5%BC-%EB%8B%A4%EB%A3%A8%EB%8A%94-%EB%B0%A9%EB%B2%95-7d1fb64ea0cf

R을 이용한 회귀분석 (이부일 | 인사이트마이닝)
; https://www.youtube.com/watch?v=fCF1SXix10Y





[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]







[최초 등록일: ]
[최종 수정일: 4/16/2024]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 91  [92]  93  94  95  96  97  98  99  100  101  102  103  104  105  ...
NoWriterDateCnt.TitleFile(s)
11635정성태8/1/201818691오류 유형: 472. C# 컴파일 오류 - Your project is not referencing the ".NETFramework,Version=v3.5" framework.
11634정성태8/1/201821646.NET Framework: 790. .NET Thread 상태가 Cooperative일 때 GC hang 현상 재현 방법파일 다운로드1
11633정성태7/29/201825587Graphics: 15. Unity - shader의 World matrix(unity_ObjectToWorld)를 수작업으로 구성 [2]파일 다운로드1
11632정성태7/28/201827908Graphics: 14. C# - Unity에서 캐릭터가 바라보는 방향을 기준으로 카메라의 위치 이동 및 회전하는 방법
11631정성태7/27/201829858Graphics: 13. Unity로 실습하는 Shader (9) - 투명 배경이 있는 텍스처 입히기 [1]
11630정성태7/27/201825012개발 환경 구성: 391. (GitHub 등과 직접 연동해) 소스 코드 디버깅을 쉽게 해 주는 SourceLink [3]
11629정성태7/26/201823795.NET Framework: 789. C# 컴파일 옵션 - Check for arithmetic overflow/underflow [2]
11628정성태7/25/201825637Graphics: 12. Unity로 실습하는 Shader (8) - 다중 패스(Multi-Pass Shader)
11627정성태7/25/201820034개발 환경 구성: 390. C# - 컴파일러 옵션 OSS signing / Public Signing
11626정성태7/25/201818395오류 유형: 471. .C++ 함수를 const로 바꾼 경우 C2440 컴파일 오류가 발생한다면?
11625정성태7/24/201817617Math: 49. GeoGebra 기하 (25) - 타원의 중심점 찾기파일 다운로드1
11624정성태7/24/201822056개발 환경 구성: 389. C# - 재현 가능한 빌드(reproducible builds) == Deterministic builds [4]
11623정성태7/24/201821446Math: 48. C# - 가우시안 함수의 이산형(discrete) 커널 값 생성파일 다운로드1
11622정성태7/23/201821606개발 환경 구성: 388. Windows 환경에서 Octave 패키지 설치하는 방법
11621정성태7/23/201819221VC++: 127. 멤버 함수에 대한 포인터를 외부에서 호출하는 방법파일 다운로드1
11620정성태7/22/201822480Graphics: 11. Unity로 실습하는 Shader (7) - Blur (평균값, 가우스, 중간값) 필터 [1]파일 다운로드1
11619정성태7/21/201821513Graphics: 10. Unity로 실습하는 Shader (6) - Mosaic Shading
11618정성태7/20/201818594개발 환경 구성: 387. 삼성 오디세이(Odyssey) 노트북의 운영체제를 새로 설치하는 방법
11617정성태7/20/201819386Team Foundation Server: 50. TFS 소스 코드 관리 기능 (5) - "Rollback", "Rollback Entire Changeset"
11616정성태7/17/201818748Graphics: 9. Unity Shader - 전역 변수의 초기화
11615정성태7/17/201823091.NET Framework: 788. RawInput을 이용한 키보드/마우스 입력 모니터링파일 다운로드1
11614정성태7/17/201825311Graphics: 8. Unity Shader - Texture의 UV 좌표에 대응하는 Pixel 좌표
11613정성태7/16/201821613Graphics: 7. Unity로 실습하는 Shader (5) - Flat Shading
11612정성태7/16/201820593Windows: 148. Windows - Raw Input의 Top level collection 의미
11611정성태7/15/201820820Graphics: 6. Unity로 실습하는 Shader (4) - 퐁 셰이딩(phong shading)
11610정성태7/15/201817369Graphics: 5. Unity로 실습하는 Shader (3) - 고로 셰이딩(gouraud shading) + 퐁 모델(Phong model) + Texture
... 91  [92]  93  94  95  96  97  98  99  100  101  102  103  104  105  ...