Microsoft MVP성태의 닷넷 이야기
Math: 41. GeoGebra 기하 (18) - 원의 중심 및 접선 [링크 복사], [링크+제목 복사]
조회: 2912
글쓴 사람
홈페이지
첨부 파일

GeoGebra 기하 (18) - 원의 중심 및 접선

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

이번엔 원의 중심을 결정하고 접선도 그어 보겠습니다. 우선, 중심의 경우 지난 글에서 이미 답이 나왔습니다.

GeoGebra 기하 (8) - 호(Arc)의 이등분
; https://www.sysnet.pe.kr/2/0/11578

즉 아무 원호나 2개 그어,

circle_tangent_line_1.png

그것의 수직 이등분선(Perpendicular Bisector)이 만나는 점이 원의 중심입니다.

circle_tangent_line_2.png

자, 그렇게 해서 점의 중심을 정했으면 이제 원 위에 있는 임의의 점에 대한 접선을 구하는 것이 가능합니다. 접선은,

circle_tangent_line_3.png

점 K와 원의 중심 A를 이은 선과 수직이기 때문에 선분 AK에 대해 점 K에서 Perpendicular Line을 이용해 수직선을 그어주면 됩니다.

circle_tangent_line_4.png

여기서 약간의 방정식을 정리해 보면, 점 A가 (0,0) 좌표에 있고 반지름이 3인 원의 방정식은 다음과 같습니다.

(x - x0)2 + (y - y0)2 = d2 (d == 반지름)

x0 = 0
y0 = 0
d = 3

x2 + y2 = 32

일반화 시켜 점 (x1, y1)이라고 하면,

x12 + y12 =  d2

그리고 직선 AK의 방정식은 점 K(x1, y1)를 지나므로,

y = (y1 / x1) * x

이때의 접선의 기울기는 다음과 같이 구할 수 있습니다.

m = 직선 AK의 기울기
m = (y1 / x1)

m' = 점 K에서의 접선의 기울기
m * m' = -1 (수직이므로 기울기를 곱한 경우 -1)

m' = -(x1 / y1)

따라서 해당 기울기를 가진 접선의 방정식은,

y = -(x1 / y1)(x - x1) + y1

와 같습니다. 실제로 "Steps"에 나온 점 K의 위치를 이용해 직선의 방정식을 구해 볼까요? ^^

circle_tangent_line_5.png

위와 같이 "Steps"를 통해서 보면 점 K의 위치가 (2.5, 1.6)임을 알 수 있습니다. 따라서 이것을 방정식에 대입해 보면,

x1 = 2.5
y1 = 1.6

y = -(2.5 / 1.6)(x - 2.5) + 1.6
  = -1.5625(x - 2.5) + 1.6
  = -1.5625x + 3.90625 + 1.6
  = -1.5625x + 5.50625

와 같이 구할 수 있고, 이것을 역시 "Steps"에 나온 접선의 방정식과 비교해 보면,

circle_tangent_line_6.png

-9 = -2.5x - 1.6y
9 = 2.5x + 1.6y
1.6y = -2.5x + 9
y = -(2.5 / 1.6)x + (9 / 1.6)
  = -1.5625x + 5.625

와 같이 나옵니다. y 절편에서 0.11875 정도의 오차가 있는데요, 이것은 지오지브라가 보여준 K의 좌표 (2.5, 1.6)에 소수점 2자리 이하의 값을 보여주지 않기 때문에 정확한 좌표 값에 의한 것이 아니므로 발생합니다.

참고로, 지오지브라에서 보여준 접선의 방정식은 이렇게도 구할 수 있습니다.

y = -(x1 / y1)(x - x1) + y1 (접선의 방정식)
yy1 = -(x1)(x - x1) + y12 (양변에 y1을 곱)
    = -x1x + x12 + y12

x1x + yy1 = x12 + y12

x1x + y1y = d2

점 K == (2.5, 1.6)이므로,
2.5x + 1.6y = 32

그러니까, 원점 (0,0)을 기준으로 한 원이 있을 때, 점의 좌표만 알면 그것의 x1, y1값과 반지름을 그대로 "x1x + y1y = d2" 공식에 넣고 y에 대해서 정리해 주면 접선의 방정식이 구해지는 것입니다.




마지막으로, 원 위에 있는 점이 아닌, 원 바깥에 있는 점을 지나는 접선을 작도해 보겠습니다.

circle_tangent_line_7.png

간단하게, 원의 중심 A와 점 C를 잇는 선분의 이등분(Midpoint or Center) 위치에서 원을 그려 생기는 2개의 교점을 선(Line)으로 연결하면 됩니다.

circle_tangent_line_8.png

왜 그런지는 원주각 정리를 떠올리면 됩니다.

circle_tangent_line_9.png

선분 AC를 지름으로 한 원이므로 중심각은 180도이고, 2개의 교점(E, F)과 이룬 각 CEA와 각 CFA는 원주각이므로 1/2이 되어 90도가 됩니다. 따라서, 점 A를 중심으로 한 원의 입장에서 보면 해당 교점들과 연결한 선은 90도를 이루므로 접선이 되는 것입니다.

(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]





[최초 등록일: ]
[최종 수정일: 7/9/2018 ]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer@outlook.com

비밀번호

댓글 쓴 사람
 




... 16  17  18  19  20  21  22  23  24  25  26  [27]  28  29  30  ...
NoWriterDateCnt.TitleFile(s)
11631정성태7/27/20185567Graphics: 13. Unity로 실습하는 Shader (9) - 투명 배경이 있는 텍스처 입히기
11630정성태2/11/20203256개발 환경 구성: 391. (GitHub 등과 직접 연동해) 소스 코드 디버깅을 쉽게 해 주는 SourceLink [2]
11629정성태7/26/20182576.NET Framework: 789. C# 컴파일 옵션 - Check for arithmetic overflow/underflow [1]
11628정성태7/26/20184308Graphics: 12. Unity로 실습하는 Shader (8) - 다중 패스(Multi-Pass Shader)
11627정성태7/25/20182031개발 환경 구성: 390. C# - 컴파일러 옵션 OSS signing / Public Signing
11626정성태7/25/20182780오류 유형: 471. .C++ 함수를 const로 바꾼 경우 C2440 컴파일 오류가 발생한다면?
11625정성태7/24/20182095Math: 49. GeoGebra 기하 (25) - 타원의 중심점 찾기파일 다운로드1
11624정성태7/24/20182579개발 환경 구성: 389. C# - 재현 가능한 빌드(reproducible builds) == Deterministic builds [4]
11623정성태7/24/20183159Math: 48. C# - 가우시안 함수의 이산형(discrete) 커널 값 생성파일 다운로드1
11622정성태7/23/20183714개발 환경 구성: 388. Windows 환경에서 Octave 패키지 설치하는 방법
11621정성태7/23/20182693VC++: 127. 멤버 함수에 대한 포인터를 외부에서 호출하는 방법파일 다운로드1
11620정성태8/3/20184249Graphics: 11. Unity로 실습하는 Shader (7) - Blur (평균값, 가우스, 중간값) 필터파일 다운로드1
11619정성태7/21/20183030Graphics: 10. Unity로 실습하는 Shader (6) - Mosaic Shading
11618정성태4/28/20202809개발 환경 구성: 387. 삼성 오디세이(Odyssey) 노트북의 운영체제를 새로 설치하는 방법
11617정성태7/20/20182748Team Foundation Server: 50. TFS 소스 코드 관리 기능 (5) - "Rollback", "Rollback Entire Changeset"
11616정성태7/17/20182631Graphics: 9. Unity Shader - 전역 변수의 초기화
11615정성태7/17/20183565.NET Framework: 788. RawInput을 이용한 키보드/마우스 입력 모니터링파일 다운로드1
11614정성태7/20/20184873Graphics: 8. Unity Shader - Texture의 UV 좌표에 대응하는 Pixel 좌표
11613정성태7/17/20183290Graphics: 7. Unity로 실습하는 Shader (5) - Flat Shading
11612정성태7/16/20182446Windows: 148. Windows - Raw Input의 Top level collection 의미
11611정성태8/3/20183486Graphics: 6. Unity로 실습하는 Shader (4) - 퐁 셰이딩(phong shading)
11610정성태8/3/20182383Graphics: 5. Unity로 실습하는 Shader (3) - 고로 셰이딩(gouraud shading) + 퐁 모델(Phong model) + Texture
11609정성태8/3/20183307Graphics: 4. Unity로 실습하는 Shader (2) - 고로 셰이딩(gouraud shading) + 퐁 모델(Phong model)
11608정성태7/17/20185399Graphics: 3. Unity로 실습하는 Shader (1) - 컬러 반전 및 상하/좌우 뒤집기
11607정성태8/30/20185367Graphics: 2. Unity로 실습하는 Shader
11606정성태8/14/20185838사물인터넷: 19. PC에 연결해 동작하는 자신만의 USB 장치 만들어 보기파일 다운로드1
... 16  17  18  19  20  21  22  23  24  25  26  [27]  28  29  30  ...