Microsoft MVP성태의 닷넷 이야기
Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method) [링크 복사], [링크+제목 복사],
조회: 26643
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
(연관된 글이 1개 있습니다.)
(시리즈 글이 7개 있습니다.)
Math: 15. 그래프 그리기로 알아보는 뉴턴-랩슨(Newton-Raphson's method)법과 제곱근 구하기 - C#
; https://www.sysnet.pe.kr/2/0/10911

Math: 53. C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

Math: 54. C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

Math: 55. C# - 다항식을 위한 최소 자승법(Least Squares Method)
; https://www.sysnet.pe.kr/2/0/11921

Math: 56. C# - 그래프 그리기로 알아보는 경사 하강법의 최소/최댓값 구하기
; https://www.sysnet.pe.kr/2/0/11923

Math: 57. C# - 해석학적 방법을 이용한 최소 자승법
; https://www.sysnet.pe.kr/2/0/11924

Math: 58. C# - 최소 자승법의 1차, 2차 수렴 그래프 변화 확인
; https://www.sysnet.pe.kr/2/0/11936




C# - 다항식을 위한 최소 자승법(Least Squares Method)

지난 글에서,

C# - 행렬식을 이용한 최소 자승법(LSM: Least Square Method)
; https://www.sysnet.pe.kr/2/0/11918

최소 자승법(최소 제곱법)을 이용해 1차 함수로 근사하는 것을 봤는데요, 이를 2차, 3차,...로 확장하는 것은 다음과 같이 매우 쉽습니다.

다항식(Polynomial): aXn 형식의 항들의 합으로 구성된 식
a: 계수(Coefficient)
X: 변수(Variable)
n: 지수(Exponent)

θ0 + θ1x1 + θ2x12 = y1
θ0 + θ1x2 + θ2x22 = y2
...
θ0 + θ1xn + θ2xn2 = yn



θ0 + θ1x1 + θ2x12 + θ3x13 = y1
θ0 + θ1x2 + θ2x22 + θ3x13 = y2
...
θ0 + θ1xn + θ2xn2 + θ3x13 = yn



따라서 행렬을 사용하는 경우 그냥 늘어나는 방정식의 계수만큼 행을 추가해 의사역행렬을 구한 후 연산하면 매개변수를 구할 수 있습니다.

private static double[] GetPolynomial(double[] xData, double[] yData, int numberOfEfficient)
{
    Matrix<double> matA = CreateMatrix.DenseOfColumnMajor(xData.Count(), 1, xData);
    Vector<double> add1 = Vector<double>.Build.DenseOfArray(Enumerable.Repeat(1.0, xData.Count()).ToArray());
    matA = matA.InsertColumn(1, add1);

    for (int i = 1; i < numberOfEfficient; i++)
    {
        double[] newColumnData = xData.Select((elem) => Math.Pow(elem, i + 1)).ToArray();
        Vector<double> addX = Vector<double>.Build.DenseOfArray(newColumnData);
        matA = matA.InsertColumn(0, addX);
    }

    Console.WriteLine(matA);
    Matrix<double> matB = CreateMatrix.DenseOfColumnMajor(yData.Count(), 1, yData);

    Matrix<double> pinvMatA = matA.PseudoInverse();
    Console.WriteLine(pinvMatA);

    Matrix<double> matX = pinvMatA * matB;
    return matX.AsColumnMajorArray();
}

[파란색 - 1차 함수, 빨간색 - 2차 함수, 노란색 3차 함수]
lsm_polynomial_1.png

일반적으로 차수가 올라갈수록 (과적합의 문제가 발생할 수 있지만) 오류는 더 적어집니다. 확인을 위해 간단하게 다음과 같이 작성해 보면,

private static void ReportError(double[] xData, double[] yData, Func<double, double> func)
{
    double error = 0.0;

    for (int i = 0; i < xData.Length; i ++)
    {
        double diff = yData[i] - func(xData[i]);
        error += (diff * diff);
    }

    Console.WriteLine("Error: " + error);
}
/*
1차: Error: 19086.9489618992
2차: Error: 6555.72459287144
3차: Error: 5038.32058563331
*/

1차에 비해 2차에서 두드러지게 오류가 낮아지는 것을 볼 수 있습니다. 따라서 이런 경우 효율을 고려한다면 2차 함수를 사용하는 것이 좋은 선택일 수 있습니다.

(첨부 파일은 이 글의 예제 코드를 포함합니다.)




지난 글에서 행렬 라이브러리를 직접 사용하지 않고 1차 근사식에 대한 매개 변수를 구하는 방법을 알아봤는데요,

C# - 최소 자승법의 1차 함수에 대한 매개변수를 단순 for 문으로 구하는 방법
; https://www.sysnet.pe.kr/2/0/11919

말 그대로 연립 방정식이므로 가우스 소거법을 이용해 매개 변수를 구하는 것도 가능합니다. 코드가 눈에 잘 안 들어오지만 어차피 복붙으로 써야 하는 것이라 큰 문제는 안 될 것입니다. ^^

Linear Equation Solver - Gaussian Elimination (C#)
; https://www.codeproject.com/Tips/388179/Linear-Equation-Solver-Gaussian-Elimination-Csharp

Gaussian elimination
; https://rosettacode.org/wiki/Gaussian_elimination#C.23

Solve a system of equations with Gaussian elimination in C#
; http://csharphelper.com/blog/2014/10/solve-a-system-of-equations-with-gaussian-elimination-in-c/

[C#/WINFORM] 다항식 최소 제곱법(Polynomial Least Squares Method) 사용하기
; https://icodebroker.tistory.com/5580




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 9/2/2021]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




1  2  3  4  [5]  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
13860정성태1/10/20254701디버깅 기술: 216. WinDbg - 2가지 유형의 식 평가 방법(MASM, C++)
13859정성태1/9/20255604디버깅 기술: 215. Windbg - syscall 이후 실행되는 KiSystemCall64 함수 및 SSDT 디버깅
13858정성태1/8/20255694개발 환경 구성: 738. PowerShell - 원격 호출 시 "powershell.exe"가 아닌 "pwsh.exe" 환경으로 명령어를 실행하는 방법
13857정성태1/7/20255990C/C++: 187. Golang - 콘솔 응용 프로그램을 Linux 데몬 서비스를 지원하도록 변경파일 다운로드1
13856정성태1/6/20254631디버깅 기술: 214. Windbg - syscall 단계까지의 Win32 API 호출 (예: Sleep)
13855정성태12/28/20246516오류 유형: 941. Golang - os.StartProcess() 사용 시 오류 정리
13854정성태12/27/20246400C/C++: 186. Golang - 콘솔 응용 프로그램을 NT 서비스를 지원하도록 변경파일 다운로드1
13853정성태12/26/20245136디버깅 기술: 213. Windbg - swapgs 명령어와 (Ring 0 커널 모드의) FS, GS Segment 레지스터
13852정성태12/25/20246422디버깅 기술: 212. Windbg - (Ring 3 사용자 모드의) FS, GS Segment 레지스터파일 다운로드1
13851정성태12/23/20245430디버깅 기술: 211. Windbg - 커널 모드 디버깅 상태에서 사용자 프로그램을 디버깅하는 방법
13850정성태12/23/20246775오류 유형: 940. "Application Information" 서비스를 중지한 경우, "This file does not have an app associated with it for performing this action."
13849정성태12/20/20246739디버깅 기술: 210. Windbg - 논리(가상) 주소를 Segmentation을 거쳐 선형 주소로 변경
13848정성태12/18/20246207디버깅 기술: 209. Windbg로 알아보는 Prototype PTE파일 다운로드2
13847정성태12/18/20246134오류 유형: 939. golang - 빌드 시 "unknown directive: toolchain" 오류 빌드 시 이런 오류가 발생한다면?
13846정성태12/17/20246779디버깅 기술: 208. Windbg로 알아보는 Trans/Soft PTE와 2가지 Page Fault 유형파일 다운로드1
13845정성태12/16/20245429디버깅 기술: 207. Windbg로 알아보는 PTE (_MMPTE)
13844정성태12/14/20247304디버깅 기술: 206. Windbg로 알아보는 PFN (_MMPFN)파일 다운로드1
13843정성태12/13/20245537오류 유형: 938. Docker container 내에서 빌드 시 error MSB3021: Unable to copy file "..." to "...". Access to the path '...' is denied.
13842정성태12/12/20245726디버깅 기술: 205. Windbg - KPCR, KPRCB
13841정성태12/11/20246449오류 유형: 937. error MSB4044: The "ValidateValidArchitecture" task was not given a value for the required parameter "RemoteTarget"
13840정성태12/11/20245606오류 유형: 936. msbuild - Your project file doesn't list 'win' as a "RuntimeIdentifier"
13839정성태12/11/20246705오류 유형: 936. msbuild - error CS1617: Invalid option '12.0' for /langversion. Use '/langversion:?' to list supported values.
13838정성태12/4/20246367오류 유형: 935. Windbg - Breakpoint 0's offset expression evaluation failed.
13837정성태12/3/20247086디버깅 기술: 204. Windbg - 윈도우 핸들 테이블 (3) - Windows 10 이상인 경우
13836정성태12/3/20245554디버깅 기술: 203. Windbg - x64 가상 주소를 물리 주소로 변환 (페이지 크기가 2MB인 경우)
13835정성태12/2/20247060오류 유형: 934. Azure - rm: cannot remove '...': Directory not empty
1  2  3  4  [5]  6  7  8  9  10  11  12  13  14  15  ...