Microsoft MVP성태의 닷넷 이야기
Math: 46. GeoGebra 기하 (23) - sqrt(n) 제곱근 [링크 복사], [링크+제목 복사],
조회: 16836
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
[root_n.zip]    
(연관된 글이 2개 있습니다.)

GeoGebra 기하 (23) - sqrt(n) 제곱근

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

이번에는 제곱근에 대한 작도를 해보겠습니다. 우선 가장 쉬운 ${ \sqrt {2} }$로 시작해 볼까요? ^^ 방정식으로 보면,

x2 - 2 = 0
x2 = 2
x = ${ \sqrt {2} }$


가 되고, 단위 길이를 Segment with Given Length를 이용해 작도하고, 그 단위 선분의 끝 점에서 수직인 직선을 그은(Perpendicular Line) 결과 제곱근 2를 구하게 됩니다.

root_n_1.png

즉, 선분 AC의 길이가 ${ \sqrt {2} }$에 해당합니다. 피타고라스 정리를 생각해 보면 간단하게 증명이 됩니다.

AC2 = AB2 + AC2
AB = AC = 1이므로,
AC2 = 2
AC = ${ \sqrt {2} }$


제곱근 2를 작도했다는 것과 함께 지난 글의 4칙 연산을 추가하면,

GeoGebra 기하 (6) - 대수의 4칙 연산
; https://www.sysnet.pe.kr/2/0/11576

다음의 수에 해당하는 것들은 모두 작도할 수 있다는 것이 됩니다.

a + b${ \sqrt {2} }$ (a, b는 유리수)


그렇다면 ${ \sqrt {3} }$은 어떻게 작도할까요? 단위 길이를 한 직선에 다음과 같이 2개를 작도하고,

root_n_2.png

선분 AB를 반지름으로 하는 원을 점 A와 점 B를 중심으로 원을 2개 그리면 그 교점이 생깁니다.

root_n_3.png

점 C로부터 점 E와 점 B에 선분을 그으면 삼각형 EBC가 작도되는데요,

root_n_4.png

이번에도 역시 피타고라스 정리에 의해 따라서 다음과 같은 식이 성립하고,

EB2 = EC2 + CB2

EB = 2, CB = 1이므로,

4 = EC2 + 1
3 = EC2

${ \sqrt {3} }$= EC


선분 EC로 제곱근 3을 작도했으니, 이번에도 역시 다음의 수들은 모두 작도할 수 있게 됩니다.

a + b${ \sqrt {3} }$ (a, b는 유리수)





혹시, 다음과 같이 임의의 길이 a를 가진 경우에도 제곱근이 가능할까요? 즉, 유리수 a에 대한 제곱근이 가능하냐는 것입니다.

root_n_5.png

이를 위해, 선분 AB를 늘려 단위 길이 1만큼 더 작도(Segment with Given Length)합니다.

root_n_6.png

연장된 선분 AD를 이등분(Midpoint or Center)하고, 그 중점을 중심으로 한 원을 그려줍니다.

root_n_7.png

마지막으로, 점 B에서 수직선을 그리고(Perpendicular Line), 그 수직선과 원 E와 만나는 교점을 점 A와 점 D에 각각 선분을 연결해 줍니다.

root_n_8.png

이때 선분 FB가 이루는 선이 바로 제곱근 a의 길이가 됩니다. 증명을 해볼까요? ^^ 중심각/원주각에 의해 각 AFD는 직각이고, 각 FBD도 수직선을 그었으므로 직각이 됩니다. 또한 삼각형 내각의 합이 180도이므로,

삼각형 AFD
    각 AFD + 각 FAD + 각 FDA = 180
    90     + 각 FAD + 각 FDA = 180

삼각형 FBD
    각 DFB + 각 FBD + 각 BDF = 180
    각 DFB + 90     + 각 BDF = 180

위의 각에서 각 FDB를 각 FDA와 각 BDF로 공유하고 있으므로 이를 x로 두었을 때,

삼각형 AFD
    90     + 각 FAD + x = 180

삼각형 FBD
    각 DFB + 90     + x = 180

결국 각 FAD와 각 DFB가 같게 됩니다. 그럼 이제 삼각형 AFB와 삼각형 FBD를 보겠습니다. 결국 2개의 각이 같으므로 닮음 조건이 성립하고, 이에 기반해 다음의 비율을 정리할 수 있습니다.

선분 BA : 선분 FB = 선분 FB : 선분 BD
==> 선분 FB * 선분 FB = 선분 BA * 선분 BD
==> (선분 FB)2 = 선분 BA * 선분 BD

선분 BD는 단위 길이 1이므로,
==> (선분 FB)2 = 선분 BA

선분 BA의 길이는 우리가 설정했던 유리수 a의 길이,
==> (선분 FB)2 = a
==> (선분 FB) = ${ \sqrt {a} }$


이로써, 제곱근과 관련한 아래의 모든 수를 작도할 수 있게 되었습니다.

a + b${ \sqrt {n} }$ (a, b는 유리수)


(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568
        Animation

    Settings - https://www.sysnet.pe.kr/2/0/11602
        Show Trace




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/12/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... [106]  107  108  109  110  111  112  113  114  115  116  117  118  119  120  ...
NoWriterDateCnt.TitleFile(s)
11271정성태8/19/201719138VS.NET IDE: 119. Visual Studio 2017에서 .NET Core 2.0 프로젝트 환경 구성하는 방법
11270정성태8/17/201730557.NET Framework: 673. C#에서 enum을 boxing 없이 int로 변환하기 [2]
11269정성태8/17/201721366디버깅 기술: 93. windbg - 풀 덤프에서 .NET 스레드의 상태를 알아내는 방법
11268정성태8/14/201720939디버깅 기술: 92. windbg - C# Monitor Lock을 획득하고 있는 스레드 찾는 방법
11267정성태8/10/201725044.NET Framework: 672. 모노 개발 환경
11266정성태8/10/201724823.NET Framework: 671. C# 6.0 이상의 소스 코드를 Visual Studio 설치 없이 명령행에서 컴파일하는 방법
11265정성태8/10/201753088기타: 66. 도서: 시작하세요! C# 7.1 프로그래밍: 기본 문법부터 실전 예제까지 [11]
11264정성태8/9/201723935오류 유형: 414. UWP app을 signtool.exe로 서명 시 0x8007000b 오류 발생
11263정성태8/9/201719420오류 유형: 413. The C# project "..." is targeting ".NETFramework, Version=v4.0", which is not installed on this machine. [3]
11262정성태8/5/201718178오류 유형: 412. windbg - SOS does not support the current target architecture. [3]
11261정성태8/4/201720741디버깅 기술: 91. windbg - 풀 덤프 파일로부터 강력한 이름의 어셈블리 추출 후 사용하는 방법
11260정성태8/3/201718824.NET Framework: 670. C# - 실행 파일로부터 공개키를 추출하는 방법
11259정성태8/2/201718111.NET Framework: 669. 지연 서명된 어셈블리를 sn.exe -Vr 등록 없이 사용하는 방법
11258정성태8/1/201718863.NET Framework: 668. 지연 서명된 DLL과 서명된 DLL의 차이점파일 다운로드1
11257정성태7/31/201719103.NET Framework: 667. bypassTrustedAppStrongNames 옵션 설명파일 다운로드1
11256정성태7/25/201720522디버깅 기술: 90. windbg의 lm 명령으로 보이지 않는 .NET 4.0 ClassLibrary를 명시적으로 로드하는 방법 [1]
11255정성태7/18/201723129디버깅 기술: 89. Win32 Debug CRT Heap Internals의 0xBAADF00D 표시 재현 [1]파일 다운로드3
11254정성태7/17/201719446개발 환경 구성: 322. "Visual Studio Emulator for Android" 에뮬레이터를 "Android Studio"와 함께 쓰는 방법
11253정성태7/17/201719693Math: 21. "Coding the Matrix" 문제 2.5.1 풀이 [1]파일 다운로드1
11252정성태7/13/201718391오류 유형: 411. RTVS 또는 PTVS 실행 시 Could not load type 'Microsoft.VisualStudio.InteractiveWindow.Shell.IVsInteractiveWindowFactory2'
11251정성태7/13/201717012디버깅 기술: 88. windbg 분석 - webengine4.dll의 MgdExplicitFlush에서 발생한 System.AccessViolationException의 crash 문제 (2)
11250정성태7/13/201720643디버깅 기술: 87. windbg 분석 - webengine4.dll의 MgdExplicitFlush에서 발생한 System.AccessViolationException의 crash 문제 [1]
11249정성태7/12/201718421오류 유형: 410. LoadLibrary("[...].dll") failed - The specified procedure could not be found.
11248정성태7/12/201724845오류 유형: 409. pip install pefile - 'cp949' codec can't decode byte 0xe2 in position 208687: illegal multibyte sequence
11247정성태7/12/201719179오류 유형: 408. SqlConnection 객체 생성 시 무한 대기 문제파일 다운로드1
11246정성태7/11/201718043VS.NET IDE: 118. Visual Studio - 다중 폴더에 포함된 파일들에 대한 "Copy to Output Directory"를 한 번에 설정하는 방법
... [106]  107  108  109  110  111  112  113  114  115  116  117  118  119  120  ...