Microsoft MVP성태의 닷넷 이야기
Math: 46. GeoGebra 기하 (23) - sqrt(n) 제곱근 [링크 복사], [링크+제목 복사]
조회: 2048
글쓴 사람
홈페이지
첨부 파일
[root_n.zip]    

GeoGebra 기하 (23) - sqrt(n) 제곱근

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

이번에는 제곱근에 대한 작도를 해보겠습니다. 우선 가장 쉬운 ${ \sqrt {2} }$로 시작해 볼까요? ^^ 방정식으로 보면,

x2 - 2 = 0
x2 = 2
x = ${ \sqrt {2} }$


가 되고, 단위 길이를 Segment with Given Length를 이용해 작도하고, 그 단위 선분의 끝 점에서 수직인 직선을 그은(Perpendicular Line) 결과 제곱근 2를 구하게 됩니다.

root_n_1.png

즉, 선분 AC의 길이가 ${ \sqrt {2} }$에 해당합니다. 피타고라스 정리를 생각해 보면 간단하게 증명이 됩니다.

AC2 = AB2 + AC2
AB = AC = 1이므로,
AC2 = 2
AC = ${ \sqrt {2} }$


제곱근 2를 작도했다는 것과 함께 지난 글의 4칙 연산을 추가하면,

GeoGebra 기하 (6) - 대수의 4칙 연산
; https://www.sysnet.pe.kr/2/0/11576

다음의 수에 해당하는 것들은 모두 작도할 수 있다는 것이 됩니다.

a + b${ \sqrt {2} }$ (a, b는 유리수)


그렇다면 ${ \sqrt {3} }$은 어떻게 작도할까요? 단위 길이를 한 직선에 다음과 같이 2개를 작도하고,

root_n_2.png

선분 AB를 반지름으로 하는 원을 점 A와 점 B를 중심으로 원을 2개 그리면 그 교점이 생깁니다.

root_n_3.png

점 C로부터 점 E와 점 B에 선분을 그으면 삼각형 EBC가 작도되는데요,

root_n_4.png

이번에도 역시 피타고라스 정리에 의해 따라서 다음과 같은 식이 성립하고,

EB2 = EC2 + CB2

EB = 2, CB = 1이므로,

4 = EC2 + 1
3 = EC2

${ \sqrt {3} }$= EC


선분 EC로 제곱근 3을 작도했으니, 이번에도 역시 다음의 수들은 모두 작도할 수 있게 됩니다.

a + b${ \sqrt {3} }$ (a, b는 유리수)





혹시, 다음과 같이 임의의 길이 a를 가진 경우에도 제곱근이 가능할까요? 즉, 유리수 a에 대한 제곱근이 가능하냐는 것입니다.

root_n_5.png

이를 위해, 선분 AB를 늘려 단위 길이 1만큼 더 작도(Segment with Given Length)합니다.

root_n_6.png

연장된 선분 AD를 이등분(Midpoint or Center)하고, 그 중점을 중심으로 한 원을 그려줍니다.

root_n_7.png

마지막으로, 점 B에서 수직선을 그리고(Perpendicular Line), 그 수직선과 원 E와 만나는 교점을 점 A와 점 D에 각각 선분을 연결해 줍니다.

root_n_8.png

이때 선분 FB가 이루는 선이 바로 제곱근 a의 길이가 됩니다. 증명을 해볼까요? ^^ 중심각/원주각에 의해 각 AFD는 직각이고, 각 FBD도 수직선을 그었으므로 직각이 됩니다. 또한 삼각형 내각의 합이 180도이므로,

삼각형 AFD
    각 AFD + 각 FAD + 각 FDA = 180
    90     + 각 FAD + 각 FDA = 180

삼각형 FBD
    각 DFB + 각 FBD + 각 BDF = 180
    각 DFB + 90     + 각 BDF = 180

위의 각에서 각 FDB를 각 FDA와 각 BDF로 공유하고 있으므로 이를 x로 두었을 때,

삼각형 AFD
    90     + 각 FAD + x = 180

삼각형 FBD
    각 DFB + 90     + x = 180

결국 각 FAD와 각 DFB가 같게 됩니다. 그럼 이제 삼각형 AFB와 삼각형 FBD를 보겠습니다. 결국 2개의 각이 같으므로 닮음 조건이 성립하고, 이에 기반해 다음의 비율을 정리할 수 있습니다.

선분 BA : 선분 FB = 선분 FB : 선분 BD
==> 선분 FB * 선분 FB = 선분 BA * 선분 BD
==> (선분 FB)2 = 선분 BA * 선분 BD

선분 BD는 단위 길이 1이므로,
==> (선분 FB)2 = 선분 BA

선분 BA의 길이는 우리가 설정했던 유리수 a의 길이,
==> (선분 FB)2 = a
==> (선분 FB) = ${ \sqrt {a} }$


이로써, 제곱근과 관련한 아래의 모든 수를 작도할 수 있게 되었습니다.

a + b${ \sqrt {n} }$ (a, b는 유리수)


(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568
        Animation

    Settings - https://www.sysnet.pe.kr/2/0/11602
        Show Trace




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]





[최초 등록일: ]
[최종 수정일: 7/12/2018 ]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer@outlook.com

비밀번호

댓글 쓴 사람
 




[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...
NoWriterDateCnt.TitleFile(s)
12218정성태5/27/202027.NET Framework: 904. C# - DirectX 게임 클라이언트 실행 중 키보드 입력을 감지하는 방법
12217정성태5/24/202021오류 유형: 615. Transaction count after EXECUTE indicates a mismatching number of BEGIN and COMMIT statements. Previous count = 0, current count = 1.
12216정성태5/15/202086.NET Framework: 904. USB/IP PROJECT를 이용해 C#으로 USB Keyboard 가상 장치 만들기
12215정성태5/12/2020109개발 환경 구성: 490. C# - (Wireshark의) USBPcap을 이용한 USB 패킷 모니터링파일 다운로드1
12214정성태5/5/202096개발 환경 구성: 489. 정식 인증서가 있는 경우 Device Driver 서명하는 방법 (2) - UEFI/SecureBoot
12213정성태5/3/2020182개발 환경 구성: 488. (코드로 가상 USB 장치를 만들 수 있는) USB/IP PROJECT 소개
12212정성태5/1/202091개발 환경 구성: 487. UEFI / Secure Boot 상태인지 확인하는 방법
12211정성태4/27/2020198개발 환경 구성: 486. WSL에서 Makefile로 공개된 리눅스 환경의 C/C++ 소스 코드 빌드
12210정성태4/20/2020298.NET Framework: 903. .NET Framework의 Strong-named 어셈블리 바인딩 (1) - app.config을 이용한 바인딩 리디렉션 [1]파일 다운로드1
12209정성태4/13/2020163오류 유형: 614. 리눅스 환경에서 C/C++ 프로그램이 Segmentation fault 에러가 발생한 경우 (2)
12208정성태4/12/2020192Linux: 29. 리눅스 환경에서 C/C++ 프로그램이 Segmentation fault 에러가 발생한 경우
12207정성태4/2/2020185스크립트: 19. Windows PowerShell의 NonInteractive 모드
12206정성태4/2/2020266오류 유형: 613. 파일 잠금이 바로 안 풀린다면? - The process cannot access the file '...' because it is being used by another process.
12205정성태4/2/2020165스크립트: 18. Powershell에서는 cmd.exe의 명령어를 지원하진 않습니다.
12204정성태4/1/2020160스크립트: 17. Powershell 명령어에 ';' (semi-colon) 문자가 포함된 경우
12203정성태3/18/2020355오류 유형: 612. warning: 'C:\ProgramData/Git/config' has a dubious owner: '...'.
12202정성태3/18/2020361개발 환경 구성: 486. .NET Framework 프로젝트를 위한 GitLab CI/CD Runner 구성
12201정성태3/18/2020188오류 유형: 611. git-credential-manager.exe: Using credentials for username "Personal Access Token".
12200정성태3/18/2020447VS.NET IDE: 145. NuGet + Github 라이브러리 디버깅 관련 옵션 3가지 - "Enable Just My Code" / "Enable Source Link support" / "Suppress JIT optimization on module load (Managed only)"
12199정성태3/17/2020179오류 유형: 610. C# - CodeDomProvider 사용 시 Unhandled Exception: System.IO.DirectoryNotFoundException: Could not find a part of the path '...\f2_6uod0.tmp'.
12198정성태3/17/2020193오류 유형: 609. SQL 서버 접속 시 "Cannot open user default database. Login failed."
12197정성태3/17/2020303VS.NET IDE: 144. .NET Core 콘솔 응용 프로그램을 배포(publish) 시 docker image 자동 생성 - 두 번째 이야기
12196정성태3/17/2020278오류 유형: 608. The ServicedComponent being invoked is not correctly configured (Use regsvcs to re-register).
12195정성태3/17/2020372.NET Framework: 902. C# - 프로세스의 모든 핸들을 열람 - 세 번째 이야기
12194정성태3/16/2020221오류 유형: 607. PostgreSQL - Npgsql.NpgsqlException: sorry, too many clients already
[1]  2  3  4  5  6  7  8  9  10  11  12  13  14  15  ...