Microsoft MVP성태의 닷넷 이야기
Math: 46. GeoGebra 기하 (23) - sqrt(n) 제곱근 [링크 복사], [링크+제목 복사],
조회: 17614
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
[root_n.zip]    
(연관된 글이 2개 있습니다.)

GeoGebra 기하 (23) - sqrt(n) 제곱근

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

이번에는 제곱근에 대한 작도를 해보겠습니다. 우선 가장 쉬운 ${ \sqrt {2} }$로 시작해 볼까요? ^^ 방정식으로 보면,

x2 - 2 = 0
x2 = 2
x = ${ \sqrt {2} }$


가 되고, 단위 길이를 Segment with Given Length를 이용해 작도하고, 그 단위 선분의 끝 점에서 수직인 직선을 그은(Perpendicular Line) 결과 제곱근 2를 구하게 됩니다.

root_n_1.png

즉, 선분 AC의 길이가 ${ \sqrt {2} }$에 해당합니다. 피타고라스 정리를 생각해 보면 간단하게 증명이 됩니다.

AC2 = AB2 + AC2
AB = AC = 1이므로,
AC2 = 2
AC = ${ \sqrt {2} }$


제곱근 2를 작도했다는 것과 함께 지난 글의 4칙 연산을 추가하면,

GeoGebra 기하 (6) - 대수의 4칙 연산
; https://www.sysnet.pe.kr/2/0/11576

다음의 수에 해당하는 것들은 모두 작도할 수 있다는 것이 됩니다.

a + b${ \sqrt {2} }$ (a, b는 유리수)


그렇다면 ${ \sqrt {3} }$은 어떻게 작도할까요? 단위 길이를 한 직선에 다음과 같이 2개를 작도하고,

root_n_2.png

선분 AB를 반지름으로 하는 원을 점 A와 점 B를 중심으로 원을 2개 그리면 그 교점이 생깁니다.

root_n_3.png

점 C로부터 점 E와 점 B에 선분을 그으면 삼각형 EBC가 작도되는데요,

root_n_4.png

이번에도 역시 피타고라스 정리에 의해 따라서 다음과 같은 식이 성립하고,

EB2 = EC2 + CB2

EB = 2, CB = 1이므로,

4 = EC2 + 1
3 = EC2

${ \sqrt {3} }$= EC


선분 EC로 제곱근 3을 작도했으니, 이번에도 역시 다음의 수들은 모두 작도할 수 있게 됩니다.

a + b${ \sqrt {3} }$ (a, b는 유리수)





혹시, 다음과 같이 임의의 길이 a를 가진 경우에도 제곱근이 가능할까요? 즉, 유리수 a에 대한 제곱근이 가능하냐는 것입니다.

root_n_5.png

이를 위해, 선분 AB를 늘려 단위 길이 1만큼 더 작도(Segment with Given Length)합니다.

root_n_6.png

연장된 선분 AD를 이등분(Midpoint or Center)하고, 그 중점을 중심으로 한 원을 그려줍니다.

root_n_7.png

마지막으로, 점 B에서 수직선을 그리고(Perpendicular Line), 그 수직선과 원 E와 만나는 교점을 점 A와 점 D에 각각 선분을 연결해 줍니다.

root_n_8.png

이때 선분 FB가 이루는 선이 바로 제곱근 a의 길이가 됩니다. 증명을 해볼까요? ^^ 중심각/원주각에 의해 각 AFD는 직각이고, 각 FBD도 수직선을 그었으므로 직각이 됩니다. 또한 삼각형 내각의 합이 180도이므로,

삼각형 AFD
    각 AFD + 각 FAD + 각 FDA = 180
    90     + 각 FAD + 각 FDA = 180

삼각형 FBD
    각 DFB + 각 FBD + 각 BDF = 180
    각 DFB + 90     + 각 BDF = 180

위의 각에서 각 FDB를 각 FDA와 각 BDF로 공유하고 있으므로 이를 x로 두었을 때,

삼각형 AFD
    90     + 각 FAD + x = 180

삼각형 FBD
    각 DFB + 90     + x = 180

결국 각 FAD와 각 DFB가 같게 됩니다. 그럼 이제 삼각형 AFB와 삼각형 FBD를 보겠습니다. 결국 2개의 각이 같으므로 닮음 조건이 성립하고, 이에 기반해 다음의 비율을 정리할 수 있습니다.

선분 BA : 선분 FB = 선분 FB : 선분 BD
==> 선분 FB * 선분 FB = 선분 BA * 선분 BD
==> (선분 FB)2 = 선분 BA * 선분 BD

선분 BD는 단위 길이 1이므로,
==> (선분 FB)2 = 선분 BA

선분 BA의 길이는 우리가 설정했던 유리수 a의 길이,
==> (선분 FB)2 = a
==> (선분 FB) = ${ \sqrt {a} }$


이로써, 제곱근과 관련한 아래의 모든 수를 작도할 수 있게 되었습니다.

a + b${ \sqrt {n} }$ (a, b는 유리수)


(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568
        Animation

    Settings - https://www.sysnet.pe.kr/2/0/11602
        Show Trace




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/12/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 121  122  [123]  124  125  126  127  128  129  130  131  132  133  134  135  ...
NoWriterDateCnt.TitleFile(s)
10882정성태1/6/201622392Windows: 113. 윈도우의 2179, 26143, 47001 TCP 포트 사용 [1]
10881정성태1/3/201623413오류 유형: 316. 윈도우 10 - 바탕/돋음 체가 사라져 한글이 깨지는 현상 [2]
10880정성태12/16/201521493오류 유형: 315. 닷넷 프로파일러의 오류 코드 정보
10879정성태12/16/201523366오류 유형: 314. Error : DEP0700 : Registration of the app failed. error 0x80070005
10878정성태12/9/201526524디버깅 기술: 75. UWP(유니버설 윈도우 플랫폼) 앱에서 global::System.Diagnostics.Debugger.Break 예외 발생 시 대응 방법
10877정성태12/9/201530805VC++: 93. std::thread 사용 시 R6010 오류 [2]
10876정성태11/26/201526748.NET Framework: 541. SignedXml을 이용한 ds:Signature만드는 방법 [3]파일 다운로드1
10875정성태11/26/201531899개발 환경 구성: 279. signtool.exe의 다중 서명 기능 [2]
10874정성태11/26/201527618개발 환경 구성: 278. 인증서와 인증서를 이용한 코드 사인의 해시 구분
10873정성태11/25/201526238.NET Framework: 540. C# - 부동 소수 계산 왜 이렇게 나오죠? (2) [3]파일 다운로드1
10872정성태11/24/201534349.NET Framework: 539. C# - 부동 소수 계산 왜 이렇게 나오죠? (1) [1]
10871정성태11/23/201528761오류 유형: 313. SignTool Error: No certificates were found that met all the given criteria.
10870정성태11/23/201529961오류 유형: 312. 윈도우 10 TH2 (버전 1511) 업데이트가 안되는 경우 [1]
10869정성태11/23/201526147오류 유형: 311. certutil 실행 오류 - 0x80070057 [1]
10868정성태11/20/201525560제니퍼 .NET: 25. 제니퍼 닷넷 적용 사례 (5) - RestSharp 라이브러리의 CPU High 현상파일 다운로드1
10867정성태10/18/201528691.NET Framework: 538. Thread.Abort로 인해 프로세스가 종료되는 현상
10866정성태10/14/201523956.NET Framework: 537. C# - Reflection의 박싱 없이 값 형식을 다루는 방법파일 다운로드1
10865정성태10/13/201524270.NET Framework: 536. Thread.Abort의 스레드 종료 지연파일 다운로드1
10864정성태10/12/201521960.NET Framework: 535. aspnet.config 파일의 설정을 읽는 방법
10863정성태10/9/201527513.NET Framework: 534. ASP.NET 응용 프로그램이 예외로 프로세스가 종료된다면?
10862정성태10/9/201525737오류 유형: 310. 비주얼 스튜디오 - Unspecified error (Exception from HRESULT: 0x80004005 (E_FAIL))
10861정성태10/9/201530429기타: 54. 도서: 시작하세요! C# 6.0 프로그래밍: 기본 문법부터 실전 예제까지 (2)
10860정성태10/5/201528135개발 환경 구성: 277. IIS AppPool의 시작/중단에 대한 이벤트 로그 확인 방법
10859정성태10/5/201528539.NET Framework: 533. C#에서 string 형식이 primitive일까요? [6]
10858정성태10/2/201525038VS.NET IDE: 105. Visual Studio의 단위 테스트 작성 시 Fakes를 이용한 메서드 재정의 방법 [1]파일 다운로드1
10857정성태10/1/201521745VS.NET IDE: 104. Visual C++ 프로젝트의 빌드 이벤트에서 환경 변수 사용하는 방법
... 121  122  [123]  124  125  126  127  128  129  130  131  132  133  134  135  ...