Microsoft MVP성태의 닷넷 이야기
Math: 46. GeoGebra 기하 (23) - sqrt(n) 제곱근 [링크 복사], [링크+제목 복사],
조회: 17013
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
[root_n.zip]    
(연관된 글이 2개 있습니다.)

GeoGebra 기하 (23) - sqrt(n) 제곱근

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

이번에는 제곱근에 대한 작도를 해보겠습니다. 우선 가장 쉬운 ${ \sqrt {2} }$로 시작해 볼까요? ^^ 방정식으로 보면,

x2 - 2 = 0
x2 = 2
x = ${ \sqrt {2} }$


가 되고, 단위 길이를 Segment with Given Length를 이용해 작도하고, 그 단위 선분의 끝 점에서 수직인 직선을 그은(Perpendicular Line) 결과 제곱근 2를 구하게 됩니다.

root_n_1.png

즉, 선분 AC의 길이가 ${ \sqrt {2} }$에 해당합니다. 피타고라스 정리를 생각해 보면 간단하게 증명이 됩니다.

AC2 = AB2 + AC2
AB = AC = 1이므로,
AC2 = 2
AC = ${ \sqrt {2} }$


제곱근 2를 작도했다는 것과 함께 지난 글의 4칙 연산을 추가하면,

GeoGebra 기하 (6) - 대수의 4칙 연산
; https://www.sysnet.pe.kr/2/0/11576

다음의 수에 해당하는 것들은 모두 작도할 수 있다는 것이 됩니다.

a + b${ \sqrt {2} }$ (a, b는 유리수)


그렇다면 ${ \sqrt {3} }$은 어떻게 작도할까요? 단위 길이를 한 직선에 다음과 같이 2개를 작도하고,

root_n_2.png

선분 AB를 반지름으로 하는 원을 점 A와 점 B를 중심으로 원을 2개 그리면 그 교점이 생깁니다.

root_n_3.png

점 C로부터 점 E와 점 B에 선분을 그으면 삼각형 EBC가 작도되는데요,

root_n_4.png

이번에도 역시 피타고라스 정리에 의해 따라서 다음과 같은 식이 성립하고,

EB2 = EC2 + CB2

EB = 2, CB = 1이므로,

4 = EC2 + 1
3 = EC2

${ \sqrt {3} }$= EC


선분 EC로 제곱근 3을 작도했으니, 이번에도 역시 다음의 수들은 모두 작도할 수 있게 됩니다.

a + b${ \sqrt {3} }$ (a, b는 유리수)





혹시, 다음과 같이 임의의 길이 a를 가진 경우에도 제곱근이 가능할까요? 즉, 유리수 a에 대한 제곱근이 가능하냐는 것입니다.

root_n_5.png

이를 위해, 선분 AB를 늘려 단위 길이 1만큼 더 작도(Segment with Given Length)합니다.

root_n_6.png

연장된 선분 AD를 이등분(Midpoint or Center)하고, 그 중점을 중심으로 한 원을 그려줍니다.

root_n_7.png

마지막으로, 점 B에서 수직선을 그리고(Perpendicular Line), 그 수직선과 원 E와 만나는 교점을 점 A와 점 D에 각각 선분을 연결해 줍니다.

root_n_8.png

이때 선분 FB가 이루는 선이 바로 제곱근 a의 길이가 됩니다. 증명을 해볼까요? ^^ 중심각/원주각에 의해 각 AFD는 직각이고, 각 FBD도 수직선을 그었으므로 직각이 됩니다. 또한 삼각형 내각의 합이 180도이므로,

삼각형 AFD
    각 AFD + 각 FAD + 각 FDA = 180
    90     + 각 FAD + 각 FDA = 180

삼각형 FBD
    각 DFB + 각 FBD + 각 BDF = 180
    각 DFB + 90     + 각 BDF = 180

위의 각에서 각 FDB를 각 FDA와 각 BDF로 공유하고 있으므로 이를 x로 두었을 때,

삼각형 AFD
    90     + 각 FAD + x = 180

삼각형 FBD
    각 DFB + 90     + x = 180

결국 각 FAD와 각 DFB가 같게 됩니다. 그럼 이제 삼각형 AFB와 삼각형 FBD를 보겠습니다. 결국 2개의 각이 같으므로 닮음 조건이 성립하고, 이에 기반해 다음의 비율을 정리할 수 있습니다.

선분 BA : 선분 FB = 선분 FB : 선분 BD
==> 선분 FB * 선분 FB = 선분 BA * 선분 BD
==> (선분 FB)2 = 선분 BA * 선분 BD

선분 BD는 단위 길이 1이므로,
==> (선분 FB)2 = 선분 BA

선분 BA의 길이는 우리가 설정했던 유리수 a의 길이,
==> (선분 FB)2 = a
==> (선분 FB) = ${ \sqrt {a} }$


이로써, 제곱근과 관련한 아래의 모든 수를 작도할 수 있게 되었습니다.

a + b${ \sqrt {n} }$ (a, b는 유리수)


(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568
        Animation

    Settings - https://www.sysnet.pe.kr/2/0/11602
        Show Trace




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/12/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... 166  167  168  169  170  171  172  173  174  175  176  177  [178]  179  180  ...
NoWriterDateCnt.TitleFile(s)
536정성태9/12/200732364.NET Framework: 97. WCF : netTcpBinding에서의 각종 Timeout 값 설명 [11]
535정성태9/11/200729822.NET Framework: 96. WCF - PerSession에서의 클라이언트 연결 관리 [5]
534정성태9/3/200725320개발 환경 구성: 29. VHD 파일 크기 줄이기
533정성태9/2/200728033개발 환경 구성: 28. CA 서비스 - 사용자 정의 템플릿 유형 추가
532정성태9/2/200730559개발 환경 구성: 27. AD CA에서 Code Signing 인증서 유형 추가 방법
531정성태9/2/200726319.NET Framework: 95. WCF에서의 DataTable 사용
530정성태9/1/200722858.NET Framework: 94. WCF 예외에 대한 시행착오
529정성태8/31/200725724.NET Framework: 93. WCF - DataContract와 KnownType 특성 [1]
528정성태8/30/200720377오류 유형: 47. VPC - 네트워크 어댑터 MAC 주소 중복 오류
527정성태8/30/200730444Team Foundation Server: 20. 잠긴 파일을 강제로 해제 [2]
526정성태8/29/200720348오류 유형: 46. VS.NET 2008 - ASP.NET 디버깅 : Strong name validation failed.
525정성태8/27/200722584VS.NET IDE: 54. VS.NET 2008 - 새롭게 도입되는 XSD Schema Designer
524정성태8/23/200740086오류 유형: 45. 요청한 작업은, 사용자가 매핑한 구역이 열려 있는...
523정성태8/16/200722789VS.NET IDE: 53. VS.NET 2008 - 서비스 참조 시 기존 데이터 컨테이너 DLL 사용
522정성태8/13/200726387VS.NET IDE: 52. VS.NET 2008 - WCF를 위한 디버깅 환경 개선
521정성태8/8/200726386.NET Framework: 92. XmlSerializer 생성자의 실행 속도를 올리는 방법 - 두 번째 이야기 [3]
520정성태8/7/200721599VS.NET IDE: 51. Visual Studio 2008 베타 2 설치
519정성태7/27/200727978오류 유형: 44. System.BadImageFormatException [2]
518정성태7/26/200728996오류 유형: 43. System.ComponentModel.LicenseException [1]
517정성태7/19/200717329개발 환경 구성: 26. VPC - 일반 사용자 계정으로 구동
516정성태7/19/200720455오류 유형: 42. TFS - Error loading menu: Index was outside the bounds of the array [2]
515정성태7/18/200728157오류 유형: 41. SSL 서버 자격 증명을 만드는 동안 심각한 오류가 발생했습니다.
514정성태7/14/200720850Team Foundation Server: 19. Orcas에서 개선되는 TFS 기능들
513정성태7/4/200731825.NET Framework: 91. Foreground Thread / Background Thread [1]
512정성태6/27/200721733오류 유형: 40. error PRJ0050: Failed to register output.
511정성태6/25/200729771.NET Framework: 90. XmlSerializer 생성자의 실행 속도를 올리는 방법 [2]
... 166  167  168  169  170  171  172  173  174  175  176  177  [178]  179  180  ...