Microsoft MVP성태의 닷넷 이야기
Math: 46. GeoGebra 기하 (23) - sqrt(n) 제곱근 [링크 복사], [링크+제목 복사],
조회: 16929
글쓴 사람
정성태 (techsharer at outlook.com)
홈페이지
첨부 파일
[root_n.zip]    
(연관된 글이 2개 있습니다.)

GeoGebra 기하 (23) - sqrt(n) 제곱근

지오지브라 수학 앱을 이용해,

GeoGebra 기하 - 컴퍼스와 자를 이용한 작도 프로그램
; https://www.sysnet.pe.kr/2/0/11568

이번에는 제곱근에 대한 작도를 해보겠습니다. 우선 가장 쉬운 ${ \sqrt {2} }$로 시작해 볼까요? ^^ 방정식으로 보면,

x2 - 2 = 0
x2 = 2
x = ${ \sqrt {2} }$


가 되고, 단위 길이를 Segment with Given Length를 이용해 작도하고, 그 단위 선분의 끝 점에서 수직인 직선을 그은(Perpendicular Line) 결과 제곱근 2를 구하게 됩니다.

root_n_1.png

즉, 선분 AC의 길이가 ${ \sqrt {2} }$에 해당합니다. 피타고라스 정리를 생각해 보면 간단하게 증명이 됩니다.

AC2 = AB2 + AC2
AB = AC = 1이므로,
AC2 = 2
AC = ${ \sqrt {2} }$


제곱근 2를 작도했다는 것과 함께 지난 글의 4칙 연산을 추가하면,

GeoGebra 기하 (6) - 대수의 4칙 연산
; https://www.sysnet.pe.kr/2/0/11576

다음의 수에 해당하는 것들은 모두 작도할 수 있다는 것이 됩니다.

a + b${ \sqrt {2} }$ (a, b는 유리수)


그렇다면 ${ \sqrt {3} }$은 어떻게 작도할까요? 단위 길이를 한 직선에 다음과 같이 2개를 작도하고,

root_n_2.png

선분 AB를 반지름으로 하는 원을 점 A와 점 B를 중심으로 원을 2개 그리면 그 교점이 생깁니다.

root_n_3.png

점 C로부터 점 E와 점 B에 선분을 그으면 삼각형 EBC가 작도되는데요,

root_n_4.png

이번에도 역시 피타고라스 정리에 의해 따라서 다음과 같은 식이 성립하고,

EB2 = EC2 + CB2

EB = 2, CB = 1이므로,

4 = EC2 + 1
3 = EC2

${ \sqrt {3} }$= EC


선분 EC로 제곱근 3을 작도했으니, 이번에도 역시 다음의 수들은 모두 작도할 수 있게 됩니다.

a + b${ \sqrt {3} }$ (a, b는 유리수)





혹시, 다음과 같이 임의의 길이 a를 가진 경우에도 제곱근이 가능할까요? 즉, 유리수 a에 대한 제곱근이 가능하냐는 것입니다.

root_n_5.png

이를 위해, 선분 AB를 늘려 단위 길이 1만큼 더 작도(Segment with Given Length)합니다.

root_n_6.png

연장된 선분 AD를 이등분(Midpoint or Center)하고, 그 중점을 중심으로 한 원을 그려줍니다.

root_n_7.png

마지막으로, 점 B에서 수직선을 그리고(Perpendicular Line), 그 수직선과 원 E와 만나는 교점을 점 A와 점 D에 각각 선분을 연결해 줍니다.

root_n_8.png

이때 선분 FB가 이루는 선이 바로 제곱근 a의 길이가 됩니다. 증명을 해볼까요? ^^ 중심각/원주각에 의해 각 AFD는 직각이고, 각 FBD도 수직선을 그었으므로 직각이 됩니다. 또한 삼각형 내각의 합이 180도이므로,

삼각형 AFD
    각 AFD + 각 FAD + 각 FDA = 180
    90     + 각 FAD + 각 FDA = 180

삼각형 FBD
    각 DFB + 각 FBD + 각 BDF = 180
    각 DFB + 90     + 각 BDF = 180

위의 각에서 각 FDB를 각 FDA와 각 BDF로 공유하고 있으므로 이를 x로 두었을 때,

삼각형 AFD
    90     + 각 FAD + x = 180

삼각형 FBD
    각 DFB + 90     + x = 180

결국 각 FAD와 각 DFB가 같게 됩니다. 그럼 이제 삼각형 AFB와 삼각형 FBD를 보겠습니다. 결국 2개의 각이 같으므로 닮음 조건이 성립하고, 이에 기반해 다음의 비율을 정리할 수 있습니다.

선분 BA : 선분 FB = 선분 FB : 선분 BD
==> 선분 FB * 선분 FB = 선분 BA * 선분 BD
==> (선분 FB)2 = 선분 BA * 선분 BD

선분 BD는 단위 길이 1이므로,
==> (선분 FB)2 = 선분 BA

선분 BA의 길이는 우리가 설정했던 유리수 a의 길이,
==> (선분 FB)2 = a
==> (선분 FB) = ${ \sqrt {a} }$


이로써, 제곱근과 관련한 아래의 모든 수를 작도할 수 있게 되었습니다.

a + b${ \sqrt {n} }$ (a, b는 유리수)


(첨부 파일은 이 글의 작도를 담은 파일입니다.)




Basic Tools
    Move
    Point
    Segment
    Line
    Polygon
    Circle with Center through Point

Edit
    Show / Hide Label
    Show / Hide Object

Construct
    Midpoint or Center
    Perpendicular Line
    Perpendicular Bisector
    Parallel Line
    Angle Bisector

Measure
    Angle
    Angle with Given Size
    Distance or Length

Lines
    Segment
    Segment with Given Length
    Line
    Ray

Circles
    Circle with Center through Point
    Compass
    Circumcircular Arc

Polygons
    Polygon
    Regular Polygon

GeoGebra 메뉴 관련 기능
    Steps - https://www.sysnet.pe.kr/2/0/11568
        Animation

    Settings - https://www.sysnet.pe.kr/2/0/11602
        Show Trace




[이 글에 대해서 여러분들과 의견을 공유하고 싶습니다. 틀리거나 미흡한 부분 또는 의문 사항이 있으시면 언제든 댓글 남겨주십시오.]

[연관 글]






[최초 등록일: ]
[최종 수정일: 7/12/2018]

Creative Commons License
이 저작물은 크리에이티브 커먼즈 코리아 저작자표시-비영리-변경금지 2.0 대한민국 라이센스에 따라 이용하실 수 있습니다.
by SeongTae Jeong, mailto:techsharer at outlook.com

비밀번호

댓글 작성자
 




... [196]  197 
NoWriterDateCnt.TitleFile(s)
40정성태7/23/200321886COM 개체 관련: 10. IE BHO 개체를 개발할 때, 인터넷 익스플로러가 아닌 탐색기에서 활성화 되는 문제 해결 [1]
41김성현7/24/200320720    답변글 COM 개체 관련: 10.1. [답변]: IE BHO 개체를 개발할 때, 인터넷 익스플로러가 아닌 탐색기에서 활성화 되는 문제 해결
42정성태7/29/200318664        답변글 COM 개체 관련: 10.2. feedback 을 받기 위해서 답변 기능을 가능하게 해두었습니다.
39정성태7/17/200324446VS.NET IDE: 5. 원격 제어 3가지 방법
38정성태7/17/200320992.NET Framework: 8. IIS 서버 재설치와 ASP.NET 서비스의 문제점
36정성태7/17/200321648.NET Framework: 7. 시행착오 - WebService 참조 추가 오류
35정성태7/17/200322192.NET Framework: 6. Win2000에서의 .NET COM+ 자동 등록 오류 발생 해결
34정성태7/17/200320857VS.NET IDE: 4. VC++ 원격 디버깅파일 다운로드1
33정성태7/17/200321031VS.NET IDE: 3. Win2000 NAT 서비스
32정성태7/17/200322222COM 개체 관련: 9. _bstr_t, CComBSTR, string 클래스 사용 [1]
31정성태7/17/200319271COM 개체 관련: 8. IDL 구문에서 구조체를 pack 하는 방법
30정성태7/17/200336527VC++: 7. [STL] vector 사용법 및 reference 사용예 [1]파일 다운로드1
28정성태7/17/200320941스크립트: 3. Programming Microsoft Internet Explorer 5 - CHM 파일
29정성태7/17/200320425    답변글 스크립트: 3.1. Programming Microsoft Internet Explorer 5 - 소스코드
27정성태7/17/200319385COM 개체 관련: 7. HTML Control에서 DELETE, 화살표 키 등이 안 먹는 문제
26정성태7/17/200320560COM 개체 관련: 6. WebBrowser 콘트롤에서 프레임을 구하는 소스
25정성태7/17/200318155COM 개체 관련: 5. C++ Attributes - Make COM Programming a Breeze with New Feature in Visual Studio .NET [2]파일 다운로드1
24정성태7/17/200321756.NET Framework: 5. (MHT 변환해서 가져온 글) .NET 의 COM+ 서비스 사용파일 다운로드1
23정성태7/17/200325448.NET Framework: 4. webservice.htc - HTML Script에서도 웹서비스 엑세스 [2]파일 다운로드1
22정성태7/17/200320008.NET Framework: 3. .NET Framework SDK 퀵 스타트 자습서
21정성태7/17/200319063.NET Framework: 2. 김현승님의 "ASP.NET & .NET EnterpriseServices & Remoting 코드 템플릿"
20정성태2/15/200526132VS.NET IDE: 2. Platform SDK 설치
19정성태7/17/200322079.NET Framework: 1. JScript.NET 강좌 사이트[영문]
18정성태7/17/200319472COM 개체 관련: 4. Exchanging Data Over the Internet Using XML [1]파일 다운로드1
17정성태7/17/200327413VC++: 6. Win32 API Hook - 소스는 "공개소스"에있습니다. [2]
16정성태7/17/200319739COM 개체 관련: 3. IE 툴밴드의 위치문제파일 다운로드1
... [196]  197